Главная » Культура » Атмосферный фронт. Тёплый и холодный фронт. Классификация опасных природных явлений Опасные метеорологические (агрометеорологические) явления – природные процессы и явления, возникающие в атмосфере, - презентация Характеристика атмосферных вихрей

Атмосферный фронт. Тёплый и холодный фронт. Классификация опасных природных явлений Опасные метеорологические (агрометеорологические) явления – природные процессы и явления, возникающие в атмосфере, - презентация Характеристика атмосферных вихрей

Контрольная работа по теме «Климат России» 1 вариант

Задание1.Закончите предложение:

А.Поступление на землю путем излучения солнечного тепла и света ____________

Б.Изменение свойств ВМ при их перемещении над поверхностью Земли___________

В.Вихревое движение воздуха, связанное с областью низкого давления_____________

Г.Отношение годовой суммы осадков к испаряемости за этот же период__________

А.ФОРМИРУЮТСЯ НАД БОЛЬШЕЙ ЧАСТЬЮ НАШЕЙ СТРАНЫ?

Б. ЗИМОЙ СПОСОБСТВУЮТ РЕЗКОМУ ПОТЕПЛЕНИЮ,ЛЕТОМ ВЫЗЫВАЮТ ПАСМУРНУЮ ПОГОДУ С ОБЛОЖНЫМИ ДОЖДЯМИ?

В. ЗИМОЙ ПРИНОСЯТ СНЕГОПАДЫ И ОТТЕПЕЛИ, А ЛЕТОМ СМЯГЧАЯ ЖАРУ, ПРИНОСЯТ ОСАДКИ ?

Задание 3.Тест

1.Суровость климата страны нарастает в направлении

а) c севера на юг б) с востока на запад в) с запада на восток

2.Этот тип климата характерен для Д.Востока:

3.Этот тип климата отличается долгой холодной зимой и коротким холодным летом,когда температура июля не выше +5С

А) арктический Б) субарктический в) резко континентальный г) муссонный

4.Этот тип климата отличает суровая зима, солнечная и морозная; лето солнечное и теплое, небольшое количество осадков весь год.

А)Умеренно континентальный б) континентальный В) резко континентальный г) муссонный

5. Большие объемы воздуха тропосферы, обладающие однородными свойствами.

6. Состояние нижнего слоя атмосферы в данном месте в данное время.

А)атмосферный фронт б)циркуляция в)погода г)климат д)воздушные массы е)солнечная радиация

7. Прохождение холодного фронта сопровождается погодой

8.Вихри Формируются над Тихим и Атлантическим океаном, движение воздуха от окраин к центру против часовой стрелки, в центре-восходящее движение воздуха, погода изменчивая, ветреная, облачная, с осадками.

А)Циклон б)Антициклон

Задание4.

Найти соответствие: тип климата

- климатограмма 1 2 3

А)резко континентальный б)муссонный в)умеренно континентальный

Задание 5. Дополните список

засуха, _________, пыльная буря, _________, заморозки, _________, гололед, __________

а)редис б)серые хлеба в)цитрусовые г)чай

Контрольная работа по теме «Климат России» 2 вариант

Задание 1.Закончите предложение:

А.Переходная зона между разнородными ВМ длиной сотни километров и шириной десятки км.________

Б.Все разнообразие движений воздуха ___________

В.Вихревое движение воздуха, связанное с областью высокого давления ______________

Г.Свойства климата, обеспечивающие сельско-хозяйственное производство____________________

Задание 2.Определите тип воздушных масс(ВМ)

А.ФОРМИРУЮТСЯ У БЕРЕГОВ НАШЕЙ СТРАНЫ НАД ТИХИМ И АТЛАНТИЧЕСКИМ ОКЕАНАМИ?

Б. СПОСОБСТВУЮТ ОБРАЗОВАНИЮ ЖАРКОЙ, СУХОЙ ПОГОДЫ, ЗАСУХ И СУХОВЕЕВ?

В.КАКИЕ ВМ ВЕСНОЙ И ОСЕНЬЮ ПРИНОСЯТ ЗАМОРОЗКИ?

Задание 3.Тест

1.Наличие климатических областей внутри поясов объясняется большой протяженностью страны

А) а) c севера на юг б))с запада на восток

2.Этот тип климата характерен для З.Сибири:

А)Умеренно континентальный б)континентальный В) резко континентальный г) муссонный

3.Этот тип климата отличает довольно холодная малоснежная зима; обилие осадков, выпадающих в теплое время года.

А) арктический Б) субарктический в) резко континентальный г)муссонный

4. Этот тип климата отличает мягкая многоснежная зима и теплое лето:

А)Умеренно континентальный б) континентальный В) резко континентальный г) муссонный

5. Общее количество солнечной энергии, достигающей поверхности Земли.

А)атмосферный фронт б)циркуляция в)погода г)климат д)воздушные массы е)солнечная радиация

6. Средний многолетний режим погоды, характерный для какой-либо территории

А)атмосферный фронт б)циркуляция в)погода г)климат д)воздушные массы е)солнечная радиация

7. Прохождение теплого фронта сопровождается погодой

А)тихой солнечной погодой. Б) грозами, шквалистым ветром, ливнями.

8. Атмосферные вихри формируются над Сибирью, движение воздуха от центра к окраинам по часовой стрелке, в центре-нисходящее движение воздуха; погода устойчивая, безветренная, безоблачная, без осадков. летом -тёплая, зимой - морозная.

Задание4 .

Найти соответствие тип климата

- климатограмма 1 2 3

А) арктический б)муссонный в) умеренно континентальный

Задание 5. Дополните список неблагоприятных климатических явлений.

Суховей, _________ , ураган, ______________, град, ____________, туман

Задание 6 .Какие культуры не выращивают в вашей области и почему?

а)картофель б)рис в)капуста г)хлопчатник

Классификация опасных природных явлений Опасные метеорологические (агрометеорологические) явления – природные процессы и явления, возникающие в атмосфере, которые по своей интенсивности (силе), масштабу распространения и продолжительности оказывают или могут оказать поражающее воздействие на людей, сельскохозяйственных животных и растения, объекты экономики и окружающую среду. К ним относят: - бури, ураганы, смерчи (торнадо), шквалы; - сильные осадки (снегопад, ливень, град, метель, гололед); - сильный мороз; - сильная жара, засуха, суховей; - сильный туман; - поздние заморозки Метеорологические и агрометеорологические опасные явления




H, км t° С 3000 экзосфера термосфера мезосфера-90 55стратосфера тропосфера-60 Строение атмосферы



Газ Молекулярн ая масса, г/моль Содержание, % объема Плотность абсолютная, г/м 3 по отношению к сухому воздуху Азот 28,10678,967 Кислород 3220,105 Аргон 39,9440,379 Углекислый газ 44,010,529 Неон 20,18318,18* ,695 Гелий 4,0035,24* ,138 Криптон 83,71,14* ,868 Водород 2,0160,5* ,07 Озон 48(0…0,07)* ,624 Сухой воздух 28,




Психрометрические будки высокие башни и мачты аэростаты, шары-зонды, летающие лаборатории Средства космического мониторинга: метеорологические и геофизические ракеты искусственные спутники Земли космические корабли и орбитальные станции косвенные методы Для изучения атмосферы могут использоваться:








Масса атмосферы триллионов т. Масса загрязнений 1/10 тыс. % Загрязняющие вещества в атмосфере: Накапливаются со временем Распределены неравномерно на Земле Токсичны в небольших концентрациях


Источники загрязнения атмосферы: I – Естественные: пылевые, солевые, вулканические. II – Искусственные (антропогенные): Промышленные предприятия: - предприятия химической промышленности - металлургические предприятия - тепловые электростанции - цементные заводы Автотранспорт Сельскохозяйствен ные предприятия - животноводческие комплексы - птицефабрики - химические средства защиты растений - обработка почвы



Снижению загрязнения атмосферы способствуют: – регулирование в крупных городах транспортных потоков; – переход транспорта на альтернативные источники топлива (спирт, газ и др.) – строительство очистных сооружений; – перевод ТЭЦ на экологически безопасные виды топлива; – совершенствование технологий производства; – централизация мелких котельных; – вывод промышленных предприятий за черту города и др.


Общая циркуляция атмосферы - система воздушных течений крупного, планетарного масштаба, переносящих огромные массы воздуха из одних широт в другие. Рис. Распределение атмосферного давления и ветров у земной поверхности; справа – меридиональный разрез направления ветра (по А.П. Шубаеву): 1 – направление ветра; 2 – направление горизонтального барического градиента


Тип воздушной массы Обозначение Где формируется Арктические (антарктические)А ВАрктика, Антарктика Умеренных широт (полярные)П ВУмеренные широты ТропическиеТ ВСубтропические и тропические широты ЭкваториальныеЭ ВЭкваториальный пояс земли Основные географические типы воздушных масс




Атмосферные вихриМестное названиеХарактеристика Циклон (тропический и внетропический) – замкнутая барическая система - вихри, в центре которых низкое давление Тайфун (Китай, Япония) Вилли-Вилли (Австралия) Ураган (Сев. и Южной Америке) Ширина км Высота 1-12 км Диаметр области затишья ("глаз бури") км Скорость ветра до 120 м/с Время действия суток Характеристика атмосферных вихрей Атмосферные вихри






ПервичныеВторичные - сильный ветер, несущий большие массы воды, грязи, песка (до 250 км/ч); - морские волны (высотой более 10 м); - ливни (мм). - тяжелые предметы, переносимые ветром; - подтопление, затопление территории; - разрушение зданий и сооружений; - обрыв линий электропередач; - повыл деревьев, мачт, труб, опор и т.п.; - пожары, взрывы. Поражающие факторы урагана ПервичныеВторичные - потоки воздуха, несущие воду, грязь, предметы и пр. (скорость ветра в воронке до км/ч, иногда до 400 км/ч); - пониженное давление воздуха в воронке; - спиральное или вертикальное движение потоков воздуха в пределах воронки; - ливни; - грозы. - разрушение объектов при боковых ударах; - отрыв объектов и людей, подъем вверх с переносом на сотни метров; - всасывание газообразных и жидких масс с их последующим выбросом; - обрыв линий электропередач; - пожары, взрывы; - затопление территории. Поражающие факторы смерчей Смерч - атмосферный вихрь, возникающий в кучево-дождевом (грозовом) облаке и распространяющийся вниз, часто до самой поверхности земли (воды), в виде облачного рукава или хобота Торнадо (США, Мексика) Тромб (Зап. Европа) Высота – от нескольких сот метров до неск. км. Диаметр - от нескольких сот метров до 1,5 км и более. Скорость перемещения от до 100 км/ч Скорость вращения вихрей в воронке до 300 км/ч Ураган - ветер большой разрушительной силы и значительной продолжительности, возникающий в основном с июля по октябрь в зонах сближения циклона и антициклона. Тайфун (Тихий океан) Скорость ветра более 33 м/с Продолжительность 9-12 дней Ширина - до 1000 км


Атмосферные вихриМестное названиеХарактеристика Шквал - кратковременные вихри, возникающие перед холодными атмосферными фронтами, нередко сопровождаемые ливнем или градом и возникающие во все сезоны года и в любое время суток. Буря Скорость ветра 25 м/с и более Время действия до 1 часа Буря – очень сильный ветер, скорость которого меньше ураганного. ШтормПродолжительность - от нескольких часов до нескольких суток Скорость ветра м/с Ширина - до нескольких сот километров Бора - очень сильный порывистый холодный ветер приморских районов, приводящий в зимнее время к обледенению портовых сооружений и кораблей Сарма (на Байкале) Бакинский норд Продолжительность - несколько суток Скорость ветра до м/с Фён - жаркий сухой ветер, дующий со склонов гор в долину. (Кавказ, Алтай, Ср. Азия) Скорость м/с, высокая температура и низкая относительная влажность воздуха Характеристика атмосферных вихрей (продолжение)



Буря - длительный, очень сильный ветер со скоростью более 20 м/с, наблюдающийся при прохождении циклона и сопровождающийся сильным волнением на море и разрушениями на суше. Длительность действия - от нескольких часов до нескольких суток. Вид буриПервичные факторыВторичные факторы Шторм- высокая скорость ветра; - сильное волнение моря - разрушение строений, плавсредств; - разрушение, размыв побережья Пыльная буря- высокая скорость ветра; - высокая температура воздуха при крайне низкой относительной влажности; - потеря видимости, пыль. - разрушение строений; - иссушение почв, гибель с/х растений; - вынос плодородного слоя почвы (дефляция, эрозия); - потеря ориентации. Снежная буря (буран, пурга, метель) - высокая скорость ветра; - низкая температура; - потеря видимости, снег. - разрушение объектов; - переохлаждение; - обморожение; - потеря ориентации. Шквал- высокая скорость ветра (в течение 10 минут скорость ветра возрастает с 3 до 31 м/с) - разрушение строений; - бурелом. Поражающие факторы бури


Название ветрового режима Скорость ветра (км/ч) БаллыПризнаки Затишье 0 – 1,60 Дым идёт прямо Лёгкий ветерок 3,2 – 4,81 Дым изгибается Лёгкий бриз 6,4 – 11,32 Листья шевелятся Слабый бриз 12,9 – 19,33 Листья двигаются Умеренный бриз 20,9 – 28,94 Листья и пыль летят Свежий бриз 30,6 – 38,65 Тонкие деревья качаются Сильный бриз 40,2 – 49,96 Толстые деревья качаются Сильный ветер 51,5 – 61,17 Стволы деревьев изгибаются Буря 62,8 – 74,08 Ветви ломаются Сильная буря 75,5 – 86,99 Черепица и трубы срываются Полная буря 88,5 – 101,410 Деревья вырываются с корнем Шторм 103,0 – 120,711 Везде повреждения Ураган Более 120,712 Большие разрушения ВЕТЕР Шкала Бофорта

Атмосфера ("атмос" - пар) - воздушная оболочка Земли. Атмосфера по характеру изменения температуры с высотой, делится на несколько сфер

Лучистая энергия Солнца является источником движения воздуха. Между теплыми и холодными массами возникает разность температуры и атмосферного воздуха давления. Это порождает ветер.

Для обозначения движения ветра применяют различные понятия: смерч, буря, ураган, шторм, тайфун, циклон и пр.

Чтобы их систематизировать, во всем мире пользуются шкалой Бофорта , которая оценивает силу ветра в баллах от 0 до 12 (см. табл.).

Атмосферные фронты и атмосферные вихри порождают грозные природные явления, классификация которых приведена на рис. 1.9.

Рис. 1.9. Природные опасности метеорологического характера.

В табл. 1.15 приведена характеристика атмосферных вихрей.

Циклон (ураган) - (греч. кружащийся) - это сильное атмосферное возмущение, круговое вихревое движение воздуха с понижением давления в центре.

В зависимости от места зарождения циклоны подразделяются на тропические ивнетропические . Центральная часть циклона, обладающая наиболее низким давлением, слабой облачностью и слабыми ветрами, называется "глазом бури" ("глазом урагана").

Скорость движения самого циклона 40 км/ч (редко до 100 км/ч). Тропические циклоны (тайфуны) движутся быстрее. А скорость ветровых вихрей до 170 км/ч.

В зависимости от скорости различают: - ураган (115-140 км/ч); - сильный ураган (140-170 км/ч); - жесткий ураган (более 170 км/ч).

Ураганы наиболее распространены на Дальнем Востоке, в Калининградской и Северо-западных областях страны.

Предвестники урагана (циклона): - понижение давления в низких широтах и повышение в высоких; - наличие возмущений любого рода; - переменчивые ветры; - морская зыбь; - неправильные приливы и отливы.

Таблица 1.15

Характеристика атмосферных вихрей

Атмосферные вихри

название

Характеристика

Циклон (тропический и внетропический) - вихри, в центре которых низкое давление

Тайфун (Китай, Япония) Бэгвиз (Филлипины) Вилли-Вилли (Австралия) Ураган (Сев. Америка)

Диаметр вихря 500-1000 км Высота 1-12 км Диаметр области затишья ("глаз бури") 10-30 км Скорость ветра до 120 м/с Время действия - 9-12 суток

Смерч - восходящий вихрь, состоящий из быстро вращающего воздуха, смешанного с частицами влаги, песка, пыли и других взвесей, воздушная воронка, спускающаяся из низкого облака на водную поверхность или сушу

Торнадо (США, Мексика) Тромб (Зап. Европа)

Высота - несколько сот метров. Диаметр - несколько сот метров. Скорость перемещения до 150-200 км/ч Скорость вращения вихрей в воронке до 330 м/с

Шквал - кратковременные вихри, возникающие перед холодными атмосферными фронтами, нередко сопровождаемые ливнем или градом и возникающие во все сезоны года и в любое время суток.

Скорость ветра 50-60 м/с Время действия до 1 часа

Ураган - ветер большой разрушительной силы и значительной продолжительности, возникающие в основном с июля по октябрь в зонах сближения циклона и антициклона. Иногда сопровождается ливнями.

Тайфун (Тихий океан)

Скорость ветра более 29 м/с Продолжительность 9-12 дней Ширина - до 1000 км

Буря - ветер, скорость которого меньше ураганного.

Продолжительность - от нескольких часов до нескольких суток Скорость ветра 15-20 м/с Ширина - до нескольких сот километров

Бора - очень сильный порывистый холодный ветер приморских районов (Италия, Югославия, Россия), приводящий в зимнее время к обледенению портовых сооружений и кораблей

Сарма (на Байкале) Бакинский норд

Продолжительность - несколько суток Скорость ветра 50-60 м/с (иногда до 80 м/с)

Фён - жаркий сухой ветер Кавказа, Алтая, Ср. Азии (дует с гор в долину)

Скорость 20-25 м/с, высокая температура и низкая относительная влажность воздуха

Поражающие факторы урагана приведены в табл. 1.16.

Таблица 1.16

Поражающие факторы урагана

Смерч (торнадо) - чрезвычайно быстро вращающаяся воронка, свисающая из кучево-дождевого облака и наблюдающаяся как "воронкообразное облако " или "труба". Классификация смерчей дана в табл. 3.1.26.

Таблица 1.17

Классификация смерчей

Виды смерчей

По типу смерчевых облаков

Роторные; - кольцевые низкие; - башенные

По форме строения стенки воронки

Плотные; - расплывчатые

По соотношению длины и ширины

Змееобразные (воронкообразные); - хоботообразные (колонноподобные)

По скорости разрушений

Быстрые (секунды); - средние (минуты); - медленные (десятки минут).

По скорости вращения вихря в воронке

Экстремальные (330 м/с и более); - сильные (150-300 м/с); - слабые(150 м/с и менее).

На территории России смерчи распространены: на севере - у Соловецких островов, на Белом море, на юге - на Черном и Азовском морях. - Малые смерчи короткого действия проходят путь менее километра. - Малые смерчи значительного действия проходят путь в несколько километров. - Крупные смерчи проходят путь в десятки километров.

Поражающие факторы смерчей даны в табл. 1.18.

Таблица 1.18

Поражающие факторы смерчей

Буря - длительный, очень сильный ветер со скоростью более 20 м/с, наблюдающийся при прохождении циклона и сопровождающийся сильным волнением на море и разрушениями на суше. Длительность действия - от нескольких часов до нескольких суток.

В табл. 1.19 приведена классификация бурь.

Таблица 1.19

Классификация бурь

Классификационная группировка

Вид бури

В зависимости от времени года и состава вовлеченных в воздух частиц

Пыльные; - беспыльные; - снежные (пурга, буран, метель); - шквальные

По цвету и составу пыли

Черные (чернозем); - бурые, желтые (суглинки, супеси); - красные (суглинки с окислами железа); - белые (соли)

По происхождению

Местные; - транзитные; - смешанные

По времени действия

Кратковременные (минуты) с небольшим ухудшением видимости; - кратковременные (минуты) с сильным ухудшением видимости; - длительные (часы) с сильным ухудшением видимости

По температуре и влажности

Горячие; - холодные; - сухие; - влажные

Поражающие факторы бурь приведены в табл. 1.20.

Таблица 1.20.

Поражающие факторы бурь

Вид бури

Первичные факторы

Вторичные факторы

Высокая скорость ветра; - сильное волнение моря

Разрушение строений, плавсредств; - разрушение, размыв побережья

Пыльная буря (суховей)

Высокая скорость ветра; - высокая температура воздуха при крайне низкой относительной влажности; - потеря видимости, пыль.

Разрушение строений; - иссушение почв, гибель с/х растений; - вынос плодородного слоя почвы (дефляция, эрозия); - потеря ориентации.

Снежная буря (буран, пурга, метель)

Высокая скорость ветра; - низкая температура; - потеря видимости, снег.

Разрушение объектов; - переохлаждение; - обморожение; - потеря ориентации.

Высокая скорость ветра (в течение 10 минут скорость ветра возрастает с 3 до 31 м/с)

Разрушение строений; - бурелом.

Действия населения

Гроза - атмосферное явление, сопровождающееся молниями и оглушительными раскатами грома. На Земном шаре одновременно происходит до 1800 гроз.

Молния - гигантский электрический искровой разряд в атмосфере в виде яркой вспышки света.

Таблица 1.21

Виды молний

Таблица 1.21

Поражающие факторы молнии

Действия населения при грозе.

Град - частички плотного льда, выпадающего в виде осадков из мощных кучево-дождевых облаков.

Туман - помутнение воздуха над поверхностью Земли, вызываемое конденсацией водяного пара

Гололед - смерзшиеся капли переохлажденного дождя или тумана, осаждающиеся на холодной поверхности Земли.

Снежные заносы - обильное выпадение снега при скорости ветра свыше 15 м/с и продолжительности снегопада более 12 часов.

Тропические циклоны - это вихри, в центре которых низкое давление; образуются они летом и осенью над теплой поверхностью океана.
Обычно тропические циклоны возникают только в низких широтах около экватора, между 5 и 20° Северного и Южного полушарий.
Отсюда вихрь диаметром примерно 500-1000 км и высотой в 10-12 км начинает свой бег.

Тропические циклоны широко распространены на Земле, и в различных частях света их называют по-разному: в Китае и Японии - тайфунами, на Филиппинах - бэгвиз, в Австралии - вилли-вилли, вблизи побережья Северной Америки - ураганами.
По разрушительной силе тропические циклоны могут соперничать с землетрясениями или извержениями вулканов.
За один час один такой вихрь диаметром в 700 км выделяет энергию, равную 36 водородным бомбам средней мощности. В центре циклона часто бывает так называемый глаз бури - небольшая область затишья диаметром 10-30 км.
Здесь малооблачная погода, небольшая скорость ветра, высокая температура воздуха и очень низкое давление, а вокруг, вращаясь по часовой стрелке, дуют ветры ураганной силы. Их скорость может превышать 120 м/с, при этом возникает мощная облачность, сопровождаемая сильными ливчями, грозами и градом.

Вот, например, кахие беды натворил ураган «Флора», пронесшийся в октябре 1963 г. над островами Тобаго, Гаити и Куба. Скорость ветра достигала 70- 90 м/с. На Тобаго началось наводнение. На Гаити ураган уничтожил целые селения, погибли 5 тыс. человек и 100 тыс. остались без крова. Количество осадков, сопровождающих тропические циклоны, кажется невероятным в сравнении с интенсивностью дождей при самых сильных циклонах умеренных широт. Так, при прохождении одного урагана через Пуэрто-Рико за 6 часов выпало 26 млрд. т воды.
Если разделить это количество на единицу площади, осадков будет значительно больше, чем их выпадает за год, например, в Батуми (в среднем 2700 мм).

Смерч - одно из наиболее разрушительных атмосферных явлений - огромный вертикальный вихрь высотой в несколько десятков метров.

Конечно, активно бороться с тропическими циклонами люди пока не могут, но важно вовремя подготовиться к урагану, будь то на суше или на море. Для этого над необъятными просторами Мирового океана круглосуточную вахту несут метеорологические спутники, оказывающие большую помощь в прогнозе путей перемещения тропических циклонов.
Они фотографируют эти вихри даже в момент их зарождения, а по фотографии можно довольно точно определить положение центра циклона, проследить его движение. Поэтому в последние годы удавалось предупредить население обширных районов Земли о приближении тайфунов, которые нельзя было обнаружить обычными метеорологическими наблюдениями.
Смерч, наблюдавшийся в заливе Тампа Бей во Флориде в 1964 г.

Смерч - одно из наиболее разрушительных и в то же время эффектных атмосферных явлений.
Это огромный вихрь с вертикальной осью длиной в несколько сотен метров.
В отличие от тропического циклона он сконцентрирован на небольшой площади: весь как бы на глазах.

На берегу Черного моря можно видеть, как из центральной части мощного кучево-дождевого облака, нижнее основание которого принимает форму опрокинутой воронки, вытягивается гигантский темный хобот, а навстречу ему с поверхности моря поднимается другая воронка.
Если они сомкнутся, образуется огромный, быстро перемещающийся столб, вращающийся против часовой стрелки.

Смерчи образуются при неустойчивом состоянии атмосферы, когда воздух в ее нижних слоях очень теплый, а в верхних - холодный.
При этом происходит очень интенсивный воздухообмен, сопровождаемый вихрем огромной скорости - несколько десятков метров в секунду.
Диаметр смерча может достичь нескольких сот метров, а перемещается он иногда даже со скоростью 150-200 км/ч.
Внутри вихря образуется очень низкое давление, поэтому смерч втягивает в себя все, что встречает на пути: он может переносить на большое расстояние воду, почву, камни, части построек и т. д.
Известны, например, «рыбные» дожди, когда смерч из пруда или озера вместе с водой втягивал в себя и находящуюся там рыбу.

Корабль, выброшенный волнами на берег.

Смерчи на суше в США и Мексике называют торнадо, в Западной Европе - тромбом. Торнадо в Северной Америке довольно частое явление - здесь их в среднем возникает более 250 в год. Торнадо - самый сильный из смерчей, наблюдаемых на земном шаре, со скоростью ветра до 220 м/с.

Смерч на море. Диаметр смерча может достигать нескольких сот метров и перемещаться со скоростью 150-200 км/ч.

Самый страшный по своим последствиям торнадо пронесся в марте 1925 г. через штаты Миссури, Иллинойс, Кентукки и Теннесси, где погибло 689 человек. В умеренных широтах нашей страны смерчи бывают раз в несколько лет. Исключительно сильный смерч со скоростью ветра 80 м/с пронесся через г. Ростов Ярославской области в августе 1953 г. Смерч прошел через город за 8 мин; оставив полосу разрушений шириной 500 м.
Он сбросил с железнодорожных путей два вагона весом 16 т.

Признаки ухудшения погоды.

Перистые облака в виде крючков движутся с запада или юго-запада.

Ветер к вечеру не стихает, а усиливается.

Луна окаймляется маленьким венчиком (гало).

После появления быстро движущихся перистых облаков небо покрывается прозрачным (как вуаль) слоем перисто-слоистых облаков. Они видны в форме кругов около Солнца или Луны.

На небе одновременно видны облака всех ярусов: кучевые, «барашки», волнистые и перистые.

Если развившееся кучевое облако переходит в грозовое и в верхней части его образуется «наковальня», то следует ожидать града.

Утром появляются кучевые облака, которые растут и к полудню принимают форму высоких башен или гор.

Дым идет книзу или стелется по земле.

Предвидеть образование и путь движения торнадо по суше трудно: он перемещается с огромной скоростью и очень кратковременен. Однако сеть наблюдательных пунктов сообщает в Бюро погоды о возникновении торнадо и его местонахождении. Там эти данные анализируют и передают соответствующие предупреждения.

Шквалы. Раздался удар грома, сплошной черно-серый вал облаков стал еще ближе - и вот словно все смешалось. Ураганный ветер ломал и вырывал с корнем деревья, срывал крыши с домов. Это налетел шквал.

Шквал возникает в основном перед холодными атмосферными фронтами или вблизи центров небольших подвижных циклонов при вторжении холодных масс воздуха в теплые. Холодный воздух при вторжении вытесняет теплый, заставляя его быстро подниматься, и чем больше разность температур между встречающимся холодным и теплым воздухом (а она может превышать 10-15°), тем больше сила шквала. Скорость ветра при шквале достигает 50-60 м/с, а длиться он может и до одного часа; он нередко сопровождается ливнем или градом. После шквала происходит заметное похолодание. Шквал может возникнуть во все сезоны года и в любое время суток, но чаще летом, когда сильнее прогревается земная поверхность.

Шквалы - грозное явление природы, особенно из-за внезапности их появления. Приводим описание одного шквала. 24 марта 1878 г. в Англии на берегу моря встречали прибывающий из дальнего плавания фрегат «Эвридик». «Эвридик» уже показался на горизонте. До берега оставалось каких-нибудь 2-3 км. Вдруг налетел ужасающий шквал со снегом. Море покрылось огромными валами. Явление продолжалось всего минуты две. Когда шквал закончился, от фрегата не осталось никаких следов. Он был опрокинут и затонул. Ветер более 29 м/с называют ураганом.

Ураганные ветры чаще всего наблюдаются в зоне сближения циклона и антициклона, т. е. в областях с резким перепадом давления. Такие ветры наиболее характерны для прибрежных районов, где встречаются морские и континентальные воздушные массы, или в горах. Но бывают они и на равнинах. В начале января 1969 г. холодный антициклон с севера Западной Сибири быстро переместился на юг Европейской территории СССР, где встретился с циклоном, центр которого располагался над Черным морем, при этом в зоне сближения антициклона и циклона возникли очень большие разности давления: до 15 мб на 100 км. Поднялся холодный ветер со скоростью 40-45 м/с. В ночь со 2 на 3 января ураган обрушился на Западную Грузию. Он разрушил жилые дома в Кутаиси, Ткибули, Самтредиа, с корнем вырывал деревья, рвал провода. Остановились поезда, прекратил работу транспорт, кое-где возникли пожары. Огромные волны двенадцатибалльного шторма обрушились на берег около Сухуми, были повреждены корпуса санаториев курорта Пицунда. В Ростовской области, Краснодарском и Ставропольском краях ураганные ветры подняли в воздух вместе со снегом массу земли. Ветер срывал крыши с домов, разрушил верхний слой почвы, выдул посевы озимых. Снежные бури занесли дороги. Перекинувшись на Азовское море, ураган погнал воду от восточного берега моря к западному. От городов Приморско-Ахтарска и Азова море отступило на 500 м, а в Гениченске, находящемся на противоположном берегу, затопило улицы. Ураган прорвался и на юг Украины. На побёрежье Крыма были повреждены причалы, краны и пляжные сооружения. Таковы последствия лишь одного урагана.

Грозовые явления часто сопровождают вулканические извержения.

Ураганные ветры часты на побережьях арктических и дальневосточных морей, особенно зимой и осенью при прохождении циклонов. В нашей стране на станции Пестрая Дресва - на западном берегу залива Шелихова - ветер в 21 м/с и больше наблюдается раз шестьдесят в году. Станция эта расположена у входа в узкую долину. Попадая в нее, слабый восточный ветер с залива за счет сужения потока усиливается до ураганного.

Когда при сильном ветре выпадает снег, возникают метели или бураны. Метелью называется перенос снега ветром. Последний часто сопровождается вихревыми движениями снежинок. Образование метелей зависит не столько от силы ветра, сколько от того, что снег является сыпучим и легким материалом, который легко поднимается ветром с земли. Отсюда метели возникают при различных скоростях ветра, иногда начиная уже с 4-6 м/с. Метели заносят снегом дороги, взлетно-посадочные полосы аэродромов, наметают громадные сугробы.

Вихри в воздухе. Экспериментально известен ряд способов создания вихревых движений. Описанный выше способ получения дымовых колец из ящика позволяет получать вихри, радиус и скорость которых имеют порядок 10-20 см и 10 м/сек соответственно, в зависимости от диаметра отверстия и силы удара. Такие вихри проходят расстояния 15-20 м.

Вихри гораздо большего размера (радиусом до 2 м) и большей скорости (до 100 м/сек) получаются с помощью ВВ. В трубе, закрытой с одного конца и заполненной дымом, производится подрыв заряда ВВ, расположенного у дна. Вихрь, получаемый из цилиндра радиусом 2 м при заряде весом около 1 кг, проходит расстояние около 500 м. На большей части пути вихри, получаемые таким способом, имеют турбулентный характер и хорошо описываются законом движения, который изложен в § 35.

Механизм образования таких вихрей качественно ясен. При движении в цилиндре воздуха, вызванном взрывом, на стенках образуется пограничный слой. На краю цилиндра пограничный слой отрывается, в

результате чего создается тонкий слой воздуха со значительной завихренностью. Затем происходит сворачивание этого слоя. Качественная картина последовательных этапов приведена на рис. 127, где изображен один край цилиндра и срывающийся с него вихревой слой. Возможны и другие схемы образования вихрей.

При малых числах Рейнольдса спиральная структура вихря сохраняется довольно долго. При больших числах Рейнольдса, в результате неустойчивости, спиральная структура разрушается сразу и происходит турбулентное перемешивание слоев. В результате образуется вихревое ядро, распределение завихренности в котором можно найти, если решить поставленную в § 35 задачу, описываемую системой уравнений (16).

Однако в настоящий момент нет никакой схемы расчета, которая позволяла бы по заданным параметрам трубы и весу ВВ определять начальные параметры сформировавшегося турбулентного вихря (т. е. его начальные радиус и скорость). Эксперимент показывает, что для трубы с заданными параметрами существует наибольший и наименьший вес заряда, при которых вихрь образуется; на его образование сильно влияет и расположение заряда.

Вихри в воде. Мы уже говорили, что вихри в воде можно получать аналогичным способом, выталкивая поршнем из цилиндра некоторый объем жидкости, подкрашенной чернилами.

В отличие от воздушных вихрей, начальная скорость которых может достичь 100 м/сек и более, в воде при начальной скорости 10-15 м/сек вследствие сильного вращения жидкости, движущейся вместе с вихрем, возникает кавитационное кольцо. Оно возникает в момент образования вихря при срыве пограничного слоя с края Цилиндра. Если пытаться получить вихри со скоростью

более 20 м/сек, то кавитационная каверна становится столь большой, что возникает неустойчивость и вихрь разрушается. Сказанное относится к диаметрам цилиндра порядка 10 см возможно, что с увеличением диаметра удастся получить устойчивые вихри, движущиеся с большой скоростью.

Интересное явление возникает, когда вихрь движется в воде вертикально вверх по направлению к свободной поверхности. Часть жидкости, образующая так называемое тело вихря, взлетает над поверхностью, сначала почти без изменения формы - водяное кольцо выпрыгивает из воды. Иногда скорость вылетевшей массы в воздухе увеличивается. Это можно объяснить отбрасыванием воздуха, которое происходит на границе вращающейся жидкости. В дальнейшем вылетевший вихрь разрушается под действием центробежных сил.

Падение капель. Легко наблюдать вихри, образующиеся при падении капель чернил в воду. Когда чернильная капля попадает в воду, образуется кольцо, состоящее из чернил и движущееся вниз. Вместе с кольцом движется некоторый объем жидкости, образующий тело вихря, которое также окрашено чернилами, но гораздо слабее. Характер движения сильно зависит от соотношения плотностей воды и чернил. При этом оказываются существенными различия плотности в десятые доли процента.

Плотность чистой воды меньше, чем чернил. Поэтому при движении вихря на него действует сила, направленная вниз, по ходу вихря. Действие этой силы приводит к увеличению импульса вихря. Импульс вихря

где Г - циркуляция или интенсивность вихря, и R - радиус вихревого кольца, а скорость движения вихря

Если пренебречь изменением циркуляции, то из этих формул можно сделать парадоксальный вывод: действие силы в направлении движения вихря приводит к уменьшению его скорости. Действительно, из (1) следует, что с ростом импульса при постоянной

циркуляции должен увеличиваться радиус R вихря, но из (2) видно, что при постоянной циркуляции с ростом R скорость падает.

В конце движения вихря чернильное кольцо распадается на 4-6 отдельных сгустков, которые в свою очередь превращаются в вихри с маленькими спиральными кольцами внутри. В некоторых случаях эти вторичные кольца распадаются еще раз.

Механизм этого явления не очень ясен, и существует несколько его объяснений. В одной схеме главную роль играет сила тяжести и неустойчивость так называемого тейлоровского типа, которая возникает, когда в поле тяжести более плотная жидкость находится над менее плотной, причем обе жидкости вначале покоятся. Плоская граница, разделяющая две такие жидкости, неустойчива - она деформируется, и отдельные сгустки более плотной жидкости проникают в менее плотную.

При движении чернильного кольца циркуляция на самом деле уменьшается, и это приводит к полной остановке вихря. Но на кольцо продолжает действовать сила тяжести, и в принципе оно должно было бы опускаться дальше как целое. Однако возникает тейлоровская неустойчивость, и в результате кольцо распадается на отдельные сгустки, которые опускаются под действием силы тяжести и в свою очередь образуют маленькие вихревые кольца.

Возможно и другое объяснение этого явления. Увеличение радиуса чернильного кольца приводит к тому, что часть жидкости, движущаяся вместе с вихрем, принимает форму, изображенную на рис. 127 (стр. 352). В результате действия на вращающийся тор, состоящий из линий тока, сил, аналогичных силе Магнуса, элементы кольца приобретают скорость, направленную перпендикулярно скорости движения кольца как целого. Такое движение неустойчиво, и происходит распад на отдельные сгустки, которые снова превращаются в маленькие вихревые кольца.

Механизм образования вихря при падении капель в воду может иметь разный характер. Если капля падает с высоты 1-3 см, то ее вход в воду не сопровождается всплеском и свободная поверхность деформируется слабо. На границе между каплей и водой

образуется вихревой слой, сворачивание которого и приводит к образованию кольца чернил, окруженного захваченной вихрем водой. Последовательные стадии образования вихря в этом случае качественно изображены на рис. 128.

При падении капель с большой высоты механизм образования вихрей иной. Здесь падающая капля, деформируясь, растекается на поверхности воды, сообщая на площади, много большей ее диаметра, импульс с максимальной интенсивностью в центре. В результате на поверхности воды образуется впадина, она по инерции расширяется, а потом происходит схлопывание и возникает кумулятивный всплеск - султан (см. гл. VII).

Масса этого султана в несколько раз больше массы капли. Падая под действием силы тяжести в воду, султан образует вихрь по уже разобранной схеме (рис. 128); на рис. 129 изображена первая стадия падения капли, приводящая к образованию султана.

По этой схеме образуются вихри, когда на воду падает редкий дождь с крупными каплями - поверхность воды покрывается тогда сеткой небольших султанчиков. Вследствие образования таких султанчиков каждая

капля значительно наращивает свою массу, и поэтому вихри, вызванные ее падением, проникают на довольно большую глубину.

По-видимому, это обстоятельство можно положить в основу объяснения известного эффекта гашения дождем поверхностных волн в водоемах. Известно, что при наличии волн горизонтальные составляющие скорости частиц на поверхности и на некоторой глубине имеют противоположные направления. Во время дождя значительное количество жидкости, проникающее на глубину, гасит волновую скорость, а восходящие из глубины токи гасят скорость на поверхности. Было бы интересно подробнее разработать этот эффект и построить его математическую модель.

Вихревое облако атомного взрыва. Явление, очень похожее на образование вихревого облака при атомном взрыве, можно наблюдать при взрывах обычных ВВ, например, при подрыве плоской круглой пластины ВВ, расположенной на плотном грунте или на стальной плите. Можно также располагать ВВ в виде сферического слоя или стакана, как показано на рис. 130.

Наземный атомный взрыв отличается от обычного взрыва прежде всего существенно большей концентрацией энергии (кинетической и тепловой) при очень малой массе бросаемого вверх газа. При таких взрывах образование вихревого облака происходит за счет выталкивающей силы, которая появляется из-за того, что масса горячего воздуха, образующаяся при взрыве, легче окружающей среды. Выталкивающая сила играет существенную роль и при дальнейшем движении вихревого облака. Точно так же, как при движении чернильного вихря в воде, действие этой силы приводит к росту радиуса вихревого облака и уменьшению скорости. Явление осложняется тем, что плотность воздуха меняется с высотой. Схема приближенного расчета этого явления имеется в работе .

Вихревая модель турбулентности. Пусть поток жидкости или газа обтекает поверхность, которая представляет собой плоскость с вмятинами, ограниченными сферическими сегментами (рис. 131, а). В гл. V мы показали, что в районе вмятин естественно возникают зоны с постоянной завихренностью.

Предположим теперь, что завихренная зона отделяется от поверхности и начинает двигаться в основном потоке (рис.

131,6). В силу закрученности эта зона, кроме скорости V основного потока, будет иметь еще компоненту скорости, перпендикулярную к V. В результате такая движущаяся вихревая зона вызовет турбулентное перемешивание в слое жидкости, размер которого в десятки раз превышает размеры вмятины.

Это явление, по-видимому, можно использовать для объяснения и расчетов передвижения больших масс воды в океанах, а также передвижения масс воздуха в горных районах при сильных ветрах.

Снижение сопротивления. В начале главы мы говорили о том, что воздушные или водяные массы без оболочек, которые движутся вместе с вихрем, несмотря на плохо обтекаемую форму испытывают значительно меньшее сопротивление, чем такие же массы в оболочках. Мы указали и причину такого снижения сопротивления - оно объясняется непрерывностью поля скоростей.

Возникает естественный вопрос о том, нельзя ли придать обтекаемому телу такую форму (с подвижной границей) и сообщить ему такое движение, чтобы возникающее при этом течение было аналогично течению при движении вихря, и тем самым попытаться уменьшить сопротивление?

Мы приведем здесь принадлежащий Б. А. Луговцову пример, который показывает, что такая постановка вопроса имеет смысл. Рассмотрим симметричное относительно оси х плоское потенциальное течение несжимаемой невязкой жидкости, верхняя половина которого изображена на рис. 132. На бесконечности поток имеет скорость, направленную вдоль оси х, на рис. 132 штриховкой отмечена каверна, в которой поддерживается такое давление, что на ее границе величина скорости постоянна и равна

Нетрудно видеть, что если вместо каверны в поток поместить твердое тело с подвижной границей, скорость которой также равна то наше течение можно рассматривать и как точное решение задачи обтекания этого тела вязкой жидкостью. В самом деле, потенциальное течение удовлетворяет уравнению Навье-Стокса, а условие прилипания на границе тела выполняется в силу того, что скорости жидкости и границы совпадают. Таким образом, благодаря подвижной границе течение останется потенциальным, несмотря на вязкость, след не появится и полная сила, действующая на тело, будет равной нулю.

В принципе такую конструкцию тела с подвижной границей можно осуществить и на практике. Для поддержания описанного движения необходим постоянный подвод энергии, который должен компенсировать диссипацию энергии вследствие вязкости. Ниже мы подсчитаем необходимую для этого мощность.

Характер рассматриваемого течения таков, что его комплексный потенциал должен быть многозначной функцией. Чтобы выделить его однозначную ветвь, мы

сделаем в области течения разрез вдоль отрезка (рис. 132). Ясно, что комплексный потенциал отображает эту область с разрезом на область, изображенную на рис. 133, а (соответствующие точки помечены одинаковыми буквами), на нем указаны также образы линий тока (соответствующие помечены одинаковыми цифрами). Разрыв потенциала на линии не нарушает непрерывности поля скоростей, ибо производная комплексного потенциала остается непрерывной на этой линии.

На рис. 133,б показан образ области течения при отображении это круг радиуса с разрезом по действительной оси от точки до точка разветвления потока В, в которой скорость равна нулю, переходит в центр круга

Итак, в плоскости образ области течения и положение точек вполне определены. В плоскости напротив, можно произвольно задавать размеры прямоугольника Задав их, можно найти по

теореме Римана (гл. И) единственное конформное отображение левой половины области рис. 133, а на нижний полукруг рис. 133 ,б, при котором точки на обоих рисунках соответствуют друг другу. В силу симметрии тогда вся область рис. 133, а отобразится на круг с разрезом рис. 133, б. Если при этом выбрать надлежащим образом положение точки В на рис. 133, а (т. е. длину разреза), то она перейдет в центр круга и отображение определится полностью.

Это отображение удобно выразить через параметр , меняющийся в верхней полуплоскости (рис. 133, в). Конформное отображение этой полуплоскости на круг с разрезом рис. 133, б с нужным соответствием точек выписывается элементарно.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта