Главная » Другое » Разной природы начиная от золотого. Золотое сечение в растениях Выполнила: Колчина Л.А. Золотые котики Фибоначчи

Разной природы начиная от золотого. Золотое сечение в растениях Выполнила: Колчина Л.А. Золотые котики Фибоначчи

Растения - подлинные рационалисты. И именно это их свойство объясняет, почему представители разных семейств растений неизменно «применяют» одни и те же оказавшиеся наиболее удачными архитектурные принципы. Особенно широко распространен в мире растений принцип наиболее рационального использования пространства, в первую очередь при закладке тех органов растения, которые затем развиваются в огромном количестве. При этом безразлично, идет ли речь о листьях на стебле, о чешуйках на шишках хвойных деревьев, об изобилии цветков, а затем семян в крупных корзинках подсолнечника или о пучках колючек на бородавчатых выростах у кактусов. Все они в процессе своего развития размещаются в пространстве таким образом, чтобы занять в нем минимальный объем. Подобно тому, как умелые руки винодела создают в винном погребе строгий геометрические конструкции из укладываемых на хранение бутылок с вином, так и полностью сформировавшиеся органы растений располагаются по отношению друг к другу в строго определенном порядке.

Постоянно повторяющаяся в природе и все же каждый раз по-новому воспринимаемая картина целесообразного размещения ее элементов в пространстве не могла не обратить на себя внимание человека.

Вольно или невольно человек берет за образец окружающий его мир, когда он стремится воспитать в себе эстетические чувства, суждения и вкусы. Художественное восприятие формы человеком возникает, развивается и обогащается в процессе постоянного, непрерывного общения его со всем тем, что его окружает. Испокон века все здоровое и естественное является для нас красивым, гармоничным, все противоестественное, аномальное, нездоровое воспринимается как нечто уродливое, безобразное и диссонирующее. И если один и тот же архитектурный принцип, тысячекратно варьирующий в царстве флоры, вновь и вновь оказывается в поле зрения человека, вечного ученика окружающего его мира, то это не проходит бесследно. В 1958 году один из английских специалистов в области бихевиористики провел с группой лиц небольшой эксперимент. Из набора прямоугольников (фото 29) он предложил выбрать те, которые испытуемых сочтут самыми красивыми по форме. Большинство опрошенных (35 процентов) без промедления указали на фигуру, стороны которой соотносятся между собой в пропорции 21:34. Соседние фигуры также были оценены высоко, соответственно 20 процентов верхняя фигура, а 19 процентов - нижняя. Все остальные прямоугольники получили не более 10 процентов голосов каждый. Этот тест - не только чисто, статистический эксперимент, он отражает реально существующую в природе закономерность. Известно, что в мире растений наиболее часто наблюдаются те же самые пропорции. Впрочем, причины здесь уже не эстетического порядка.


Фото 29. Набор прямоугольников с различным соотношением сторон, использованных английским специалистом в области бихевиористики при проведении эксперимента. Более трети опрошенных сочли за самую «красивую» фигуру с пропорцией 21:34, которая известна как золотое сечение.

Математикам и людям искусства соотношение 21:34, а точнее 0,618034... :1 (математически это число имеет вид:

Хорошо известно как золотое сечение). Художники, начиная с эпохи Возрождения, использовали в своих картинах золотое сечение, которое они считали идеальным выражением пропорциональности и которое они могли повсюду наблюдать в природе. Но, по-видимому, в изобразительном искусстве и прежде подсознательно руководствовались этим правилом. При этом нередко брались приближенные значения, например 3:5 (=0,600) или 5:8 (=0,625). В природе в большинстве случаев наблюдается намного более строгое соответствие. Так, в корзинках подсолнечника отклонение от золотого сечения составляет всего лишь четыре тысячных доли процента.

Как проявляется золотое сечение в природе, можно видеть на фото 30 и 31. На первом из них изображен шаровидный кактус Mammillaria lanata , снятый сверху. На снимке хорошо различимо спиралевидное расположение скоплений колючек - так называемых ареол. Начало спиралей приходится на верхушечную часть кактуса. Новые ареолы зарождаются именно здесь. По мере роста и развития они строго по спирали оттесняются к краям. Если внимательно вглядеться в фотографии, то можно увидеть, что спирали идут в двух направлениях: по часовой стрелке (таких спиралей 34) и против часовой стрелки (их ровно 21). Опять 21:34. Это соотношение сторон того прямоугольника, который участники вышеописанного эксперимента назвала самым эстетичным, самым красивым по форме. Золотая пропорция (0,618034... :1) выдерживается здесь с точностью до 0,0065 процента (0,617647:1).


Фото 30. Ареолы (скопления колючек) кактуса Mammillaria lanata располагаются строго по спиралям.


Фото 31а. Тот же кактус, снятый сбоку. На этом небольшом участке его поверхности хорошо видны прямые линии, но которым располагаются ареолы. На предыдущей фотографии они имели вид спиралей.


Фото 31б. Растровая сетка в точности воспроизводит прямые линии, изображенные на фото 31а. «Сконструирована» в соответствии с золотым сечением.

Если смотреть на тот же кактус со стороны (фото 31а), то обнаруживается, что спирали на сравнительно небольшом участке поверхности кактуса выглядят как прямые линии, идущие по диагонали сверху вниз и слева направо или снизу вверх и справа налево. На фото 31б отображена построенная мною растровая сетка, в точности передающая диагональное расположение прямых оригинала. Хорошо видно, что прямые, идущие в одном направлении, имеют меньший наклон, чем прямые, идущие в противоположном направлении. При атом линии с различным наклоном располагаются на сетке так, что если вдоль горизонтальной прямой, проведенной от точки 0/0, начать считать диагонали, то в целом окажется что на 0,618... диагональ, наклоненную вправо, приходится одна диагональ с левым наклоном. Читатель вправе задать вопрос: а так ли это на самом деле? Ведь не может быть дробных прямых, которые могли бы быть сосчитаны. Но на рисунке отчетливо видно, что вначале примерно на две диагонали, имеющие наклон вправо, приходятся три, наклоненные влево (2:3=0,666), затем приблизительно на три с наклоном вправо - пять, имеющих наклон влево (5:8=0,625), и т. д. При этом точка пересечения диагоналей будет лежать тем ближе к горизонтальной прямой, чем точнее оказывается приближение к числу 0,618...

Если можно было бы дать аналогичную панорамную развертку растровой сетки, которая охватила бы целиком все растение, то обнаружилось бы, что на 21 диагональ с правым наклоном приходится 34 диагонали, у которых наклон в левую сторону, и что конечная точка нашей развертки точно совпала бы с ее началом (точка 0/0). Созданная таким образом сеть линий оказывается в эстетическом отношении столь же оптимальной, как и прямоугольник, построенный по принципу золотого сечения. Комплекс линий, имеющих вполне определенный и в то же время различный наклон, придает полю изображения эмоциональное внутреннее напряжение и одновременно строгую уравновешенность. Эти принципы композиционного построения художественного произведения присущи многим полотнам старых мастеров живописи.

Мы наложили растровую сетку на репродукцию картины Тициана «Вакх и Ариадна» (фото 32). Все основные линии перспективы совпадают с растром. Даже множество второстепенных для сюжета деталей и форм художник поместил в то поле внутреннего напряжения, на котором и построена вся картина. Обратите внимание на виднеющийся на горизонте небольшой холм в правой стороне полотна рядом с церковной колокольней, на ветви большого дерева, на очертание кучевого облака, лежащего под созвездием, на задние лапы и линию живота крупной дикой кошки, на направление оси опрокинутой вазы, на воздетую правую руку сатира в венке из виноградных лоз в правом углу холста и, наконец, на поднятую ногу лошади.


Фото 32. Растровая сетка наложена на картину Тициана «Вакх и Ариадна». Принципы золотого сечения лежат в основе многих произведений художников прошлого.

Тому, кто посчитает это делом случая или полагает, что картина Тициана является исключением, мы рекомендуем перенести растровую сетку на прозрачную бумагу и затем наложить ее на репродукции некоторых художественных полотен. Он будет изумлен тем, насколько часто композиции картин станут повторять динамику золотого сечения вплоть до ее зеркального отражения.

Такие произведения, как «Ливийская сивилла» Микеланджело, «Поклонение пастухов» Тинторетто, «Мадонна с длинной шеей» Пармиджанино, «Азия» Тьеполо (зеркальное отражение!), «Вакханалия» Пуссена, «Драка крестьян при игре в карты» Брауэра или «Праздник любви» Ватто (зеркальное отражение!), - это немногие примеры, которые лишь подтверждают общую закономерность.

Во все времена художники, осознанно или неосознанно, учились постигать законы эстетического восприятия, наблюдая природу. Живописцев всегда пленяла простая и одновременно рациональная геометрия форм биологического роста.

<<< Назад
Вперед >>>

Золотое сечение – это простой принцип, который поможет сделать дизайн приятным для визуального восприятия. В этой статье мы подробно расскажем как и зачем его использовать.

Распространенная в природе математическая пропорция, называемая Золотое сечение, или Золотая середина, основана на Последовательности Фибоначчи (о которой вы, скорее всего, слышали в школе, или читали в книге Дэна Брауна «Код да Винчи»), и подразумевает под собой соотношение сторон 1:1,61.

Такое соотношение сплошь и рядом встречается в нашей жизни (ракушки, ананасы, цветы и т.д.) и поэтому воспринимается человеком как нечто естественное, приятное взгляду.

→ Золотое сечение это взаимосвязь между двумя числами в последовательности Фибоначчи
→ Построение этой последовательности в масштабе дает спирали, которые можно увидеть в природе.

Считается, что Золотое сечение используется человечеством в искусстве и дизайне уже более 4 тысяч лет, а возможно даже больше, если верить ученым, которые утверждают, что древние Египтяне использовали этот принцип при строительстве пирамид.

Знаменитые примеры

Как мы уже говорили, Золотое сечение можно видеть на протяжении всей истории искусства и архитектуры. Вот некоторые примеры, которые только подтверждают обоснованность использования этого принципа:

Архитектура: Парфенон

В древнегреческой архитектуре Золотое сечение использовалось для вычисления идеальной пропорции между высотой и шириной здания, размеров портика, и даже расстояния между колоннами. В дальнейшем, этот принцип был унаследован архитектурой неоклассицизма.

Искусство: Тайная вечеря

Для художников композиция – основа основ. Леонардо да Винчи, как и многие другие художники, руководствовался принципом Золотого сечения: в Тайной Вечере, к примеру, фигуры учеников расположены в нижних двух третях (большее из двух частей Золотого сечения), а Иисус помещен строго по центру между двумя прямоугольниками.

Веб-дизайн: редизайн Twitter в 2010

Креативный директор Twitter Дуг Боуман (Doug Bowman) опубликовал скриншот в своем аккаунте Flickr, объясняя использование принципа Золотого сечения для редизайна 2010 года. «Все, кто интересуется #NewTwitter пропорциями – знайте, все сделано не просто так», сказал он.

Apple iCloud

Иконка сервиса iCloud тоже совсем не случайный набросок. Как объяснил Такамаса Мацумото в своем блоге (оригинальная японская версия ) все построено на математике Золотого сечения, анатомию которого можно увидеть на рисунке справа.

Как построить Золотое сечение?

Построение происходит довольно просто, и начинается с основного квадрата:

Нарисуйте квадрат. Это сформирует длину “короткой стороны” прямоугольника.

Разделите квадрат пополам вертикальной линией так, чтобы получились два прямоугольника.

В одном прямоугольнике нарисуйте линию, объединив противоположные углы.

Разверните эту линию горизонтально так, как это показано на рисунке.

Создайте еще один прямоугольник, используя горизонтальную линию, которую вы рисовали в предыдущих шагах как основу. Готово!

«Золотые» инструменты

Если чертить и вымерять не ваше любимое занятие, предоставьте всю «черную работу» инструментам, которые разработаны специально для этого. С помощью представленных ниже 4-х редакторов вы легко найдете Золотое сечение!

Приложение GoldenRATIO помогает разрабатывать веб-сайты, интерфейсы и макеты в соответствии с Золотым Сечением. Оно доступно в Mac App Store за $ 2,99, и имеет встроенный калькулятор с визуальной обратной связью, и удобную функцию «Избранное», в которой хранятся настройки для повторяющихся задач. Совместимо с Adobe Photoshop.

Этот калькулятор, который поможет вам создать идеальную типографику для сайта в соответствии с принципами Золотой пропорции. Просто введите размер шрифта, ширину содержимого в поле на сайте, и нажмите «Set my type»!

Это простое и бесплатное приложение для Mac и PC. Просто введите число, и он рассчитает для него пропорцию в соответствии с правилом Золотого сечения.

Удобная программа, которая избавит вас от необходимости расчетов и рисования сеток. С ней найти идеальные пропорции проще простого! Работает со всеми графическими редакторами, в том числе и Photoshop. Несмотря на то, что инструмент платный – 49$, есть возможность протестировать пробную версию в течение 30 дней.

ЗОЛОТОЕ СЕЧЕНИЕ - БОЖЕСТВЕННАЯ МЕРА КРАСОТЫ,
СОТВОРЕННАЯ В ПРИРОДЕ.

Золотое сечение - Божественная мера красоты, сотворенная в природе.

Аллах для всего установил должную меру. (Сура "Ат Таляк", 65:3)

…В творении Всемилостивого (Аллаха) ты не найдешь ни доли
нарушений и несоответствий. Вновь обрати взор свой вокруг, видишь ли
ты какой-нибудь изъян? И вновь свой взор ты обрати: вернется он
униженным и тщетным (не найдя ни доли несоответствия).
(Сура "Аль Мульк", 67:3-4)

"… Если с точки зрения исполнения или функции элемента какая-либо форма имеет пропорциональность и приятна, привлекательна для взора, то в таком случае мы можем тотчас же искать в ней какую-либо из функций Золотого Числа … Золотое Число вовсе не математический вымысел. Это на самом деле продукт закона природы, основанный на правилах пропорциональности." 1

Давайте выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи "Мона Лиза", подсолнухом, улиткой, сосновой шишкой и пальцами человека?

Ответ на этот вопрос сокрыт в удивительных числах, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи ((род. о к. 1170 - умер после 1228), итальянский математик. Путешествуя по Востоку, познакомился с достижениями арабской математики; способствовал передаче их на Запад. Основные работы "Liber Abaci" (1202) - трактат об арифметике (индийские цифры) и алгебре (до квадратных уравнений), "Practica Geometriae" (1220)).

После его открытия числа эти так и стали называться именем известного математика. Удивительная суть последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел. 2

Числа, образующие последовательность 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... называются "числами Фибоначчи" , а сама последовательность - последовательностью Фибоначчи .

В числах Фибоначчи существует одна очень интересная особенность. При делении любого числа из последовательности на число, стоящее перед ним в ряду, результатом всегда будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то пp евосходящая, то не достигающая его.
(Прим. иррациональное число, т.е. число, десятичное представление которого бесконечно и не периодично)

Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда… И менно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение , золотое сpеднее или золотая пропорция.

В алгебp е это число обозначается гpеческой буквой фи (Ф )

Итак, Золотая пропорция = 1 : 1,618

233 / 144 = 1,618
377 / 233 = 1,618
610 / 377 = 1,618
987 / 610 = 1,618
1597 / 987 = 1,618
2584 / 1597 = 1,618

Тело человека и золотое сечение

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Д а Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.

Самая главная книга всех современных архитекторов справочник Э.Нойферта "Строительное проектирование" содержит основные расчеты параметров туловища человека, заключающие в себе золотую пропорцию.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы. 3

M/m=1,618

Первый пример золотого сечения в строении тела человека:
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела:

  • расстояние от кончиков пальцев до запястья и от запястья до локтя равно 1:1.618
  • расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618
  • расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618
  • расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618
  • расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618
  • расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618

Золотое сечение в чертах лица человека как критерий совершенной красоты.

В строении черт лица человека также есть множество примеров, приближающихся по значению к формуле золотого сечения. Однако не бросайтесь тотчас же за линейкой, чтобы обмерять лица всех людей. Потому что точные соответствия золотому сечению, по мнению ученых и людей искусства, художников и скульпторов, существуют только у людей с совершенной красотой. Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

К примеру, если мы суммируем ширину двух передних верхних зубов и разделим эту сумму на высоту зубов, то, получив при этом число золотого сечения, можно утверждать, что строение этих зубов идеально.

На человеческом лице существуют и иные воплощения правила золотого сечения. Приведем несколько таких соотношений:

  • Высота лица / ширина лица,
  • Центральная точка соединения губ до основания носа / длина носа.
  • Высота лица / расстояние от кончика подбородка до центральной точки соединения губ
  • Ширина рта / ширина носа,
  • Ширина носа / расстояние между ноздрями,
  • Расстояние между зрачками / расстояние между бровями.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.

Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения. 4

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.

Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение. 5

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. 6 П ричем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Строение золотого ортогонального четырехугольника и спирали.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168 : 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так: "Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее." 7


Лежащее в основе строения спирали правило золотого сечения встречается в природе очень часто в бесподобных по красоте творениях. Самые наглядные примеры - спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.

Ботаники установили, что в расположении листьев на ветке, семян подсолнечника или шишек сосны со всей очевидность проявляется ряд Фибоначчи , а стало быть, проявляется закон золотого сечения .

Всевышний Господь каждому Своему творению установил особую меру и придал соразмерность, что подтверждается на примерах, встречающихся в природе. Можно привести великое множество примеров, когда процесс роста живых организмов происходит в строгом соответствии с формой логарифмической спирали.


Все пружинки в спирали имеют одинаковую форму. Математики установили, что даже при увеличении размеров пружинок форма спирали остается неизменной. В математике нет более иной формы, которая обладала бы такими же уникальными свойствами как спираль. 8

Строение морских раковин

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

"Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой. Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает. Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте." 9

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением. И это творение принадлежит Аллаху - Господу миров:

"…Господь мой безграничным знанием Своим все объемлет. Ужель опять не поразмыслить вам об этом?" (Сура "Аль Ана`а м", 6:80)

Биолог Сэр Д`а рки Томпсон этот вид роста морских раковин называет "форма роста гномов". Сэр Томпсон делает такой комментарий:

"Нет более простой системы, чем рост морских ракушек, которые растут и расширяются соразмерно, сохраняя ту же форму. Раковина, что самое удивительное, растет, но никогда не меняет формы." 10

Наутилус, размером в несколько сантиметров в диаметре, представляет собой самый выразительный пример гномового вида роста. С.Моррисон так описывает этот процесс роста наутилуса, спланировать который даже человеческим разумом представляется довольно сложным:

"Внутри раковины наутилуса есть множество отделов-комнат с перегородками из перламутра, причем сама раковина внутри представляет собой спираль, расширяющуюся от центра. По мере роста наутилуса в передней части ракушки нарастает еще одна комнатка, но уже больших размеров, чем предыдущая, а перегородки оставшейся позади комнатки покрываются слоем перламутра. Таким образом, спираль все время пропорционально расширяется." 11

Приведем лишь некоторые типы спиралевидных раковин имеющих логарифмическую форму роста в соответствии с их научными названиями:
Haliotis Parvus, Dolium Perdix, Murex, Fusus Antiquus, Scalari Pretiosa, Solarium Trochleare.

Все обнаруженные ископаемые останки раковин также имели развитую спиральную форму.

Однако логарифмическая форма роста встречается в животном мире не только у моллюсков. Рога антилоп, диких козлов, баранов и прочих подобных животных также развиваются в виде спирали по законам золотой пропорции. 12

Золотое сечение в ухе человека

Во внутреннем ухе человека имеется орган Cochlea ("Улитка"), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73º 43’.

Рога и бивни животных, развивающиеся в форме спирали.

Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль. Пауки всегда плетут свои паутины в виде логарифмической спирали. Строение таких микроорганизмов, как планктоны (виды globigerinae, planorbis, vortex, terebra, turitellae и trochida) также имеют форму спирали.

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно. К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов - вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

"Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц." 15

При изучении школьных предметов имеется возможность рассмотреть взаимосвязи между понятиями, принятыми в различных областях знаний, и процессами, протекающими в природной среде; выяснить связь между математическими законами и свойствами и закономерностями развития природы.

С древности, наблюдая за окружающей природой и создавая произведения искусства, люди искали закономерности, которые позволяли бы определить прекрасное. Но человек не только создавал красивые предметы, не только любовался ими, он все чаще задавался вопросом: почему этот предмет красив, он нравится, а другой, очень похожий, не нравится, его нельзя назвать красивым? Тогда из творца прекрасного он превращался в его исследователя. Уже в Древней Греции изучение сущности красоты, прекрасного сформировалось в отдельную ветвь науки – эстетику. Изучение прекрасного стало частью изучения гармонии природы, ее основных законов организации.

Красота скульптуры, красота храма, красота симфонии, поэмы, картины. Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов – от цветка ромашки (разве он не прекрасен?) до красоты обнаженного человеческого тела. Попытки найти подобные критерии прекрасного в различных видах искусств и природы и составляют предмет эстетики.

«Формул красоты» уже известно немало. Уже давно в своих творениях люди предпочитают правильные геометрические формы – квадрат, круг, равнобедренный треугольник, пирамиду и т. д. Симметричные фигуры обычно предпочтительнее, чем несимметричные. В пропорциях различных сооружений предпочтительны целочисленные соотношения. Человек вообще предпочитает порядок – беспорядку, простоту – сложности, определенность – неопределенности. Очевидно, в этом проявляется сущность самой жизни, как феномена природы – упорядочение беспорядка.

Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Она отвечает такому делению целого на две части, при котором отношение большей части к меньшей равно отношению целого к большей части. «Эту пропорцию называли по-разному – «золотой», «божественной», «золотым сечением», «золотым числом». Я предпочла использовать первое название, так как оно наиболее точно отражает сущность этого понятия.

Огромный интерес у меня и моих сверстников вызвал принцип «золотой пропорции». Эти знания помогают понять, что вне сознания существует нечто вполне материальное, вполне объективной, что, не будучи объективной красотой, вызывает в нас ощущение красоты. «Золотая пропорция» справедлива для любого человека, каким бы он ни был. Мне удалось провести небольшое исследование с помощью своих сверстников, которое помогло доказать этот принцип.

«Золотое сечение» в геометрии

Сейчас невозможно достоверно установить нм человека, впервые открывшего золотую пропорцию, ни время, когда это произошло. Очевидно, ее неоднократно открывали, забывали и открывали заново в разное время и в различных странах. Многие исследователи считают первооткрывателем золотой пропорции греческого математика и философа Пифагора.

С именем Пифагора мы со школы связываем теорему о сторонах треугольника – «теорему квадратов». Эта теорема удивительно красива: «Квадрат гипотенузы равен сумме квадратов катетов». В науке немного отыщешь столь красивых и простых формул.

Многие математические закономерности, как говорят, «лежали на поверхности», их нужно было увидеть человеку с аналитическим умом, мыслящему логически. А в этом нельзя было отказать философам древнего мира; ведь все их научное познание строилось на анализе предметов и явлений, установлении связи между ними. В наше время даже трудно представить, что возможно развитие науки без использования эксперимента, а ведь таковой была наука древнего мира.

Рассмотрим, например, простейший прямоугольный треугольник с отношением катетов 1:2. В этом треугольнике величина малого катета равна 1, а большего – 2. По теореме Пифагора длина гипотенузы в нем равна √5. Этот треугольник был хорошо известен в древнем мире, во многих сооружениях периода преобладают пропорции, равные отношениям катетов и гипотенузы прямоугольного треугольника со сторонами 1:2:√5 .

Отношение сторон a, b, c данного треугольника очень простые и понятные каждому, знающему основы геометрии: a/b = 1:2, c/a = √5:1, c/b = √5/2. Однако из этих величин следует и еще одно отношение (a+b)/b = (1+√5)/2, равное 1,618033. Это и есть золотая пропорция, которую обычно обозначают буквой Ф. Как видно, эта замечательная пропорция лежала буквально на поверхности – ее нужно было только заметить.

В геометрии существуют различные способы построения золотой пропорции, причем характерно, что для построения достаточно взять самые простые геометрические фигуры – квадрат или прямоугольный треугольник с отношением катетов 1:2. Если с середины квадрата провести окружность радиусом, равным диагонали полуквадрата, то на ее пересечении с продолженной стороной квадрата получим отрезок, который меньше стороны квадрата в соответствии с золотой пропорцией. Еще проще построение золотой пропорции в прямоугольном треугольнике 1:2:√5. Достаточно провести две дуги окружности, пересекающиеся в одной точке на гипотенузе, и большой катет будет разделен в соответствии с золотой пропорцией.

Треугольник со сторонами 3:4:5 входит в число целого ряда прямоугольных треугольников, именуемых в древности «божественными», для которых справедливо отношение: a2+b2 = c2, где a, b, c – целые числа. Вот некоторые из этих треугольников:

52=42+32; 132=122+52; 252=242+72.

По существу, закономерности отношений сторон в этих треугольниках и выражают собой теорему, которая позже получила название теоремы Пифагора. Знал ли Пифагор такие треугольники, или открыл их заново, или же, перейдя от этих «божественных» треугольников к другим, распространил указанную формулу на все прямоугольные треугольники, открыв при этом иррациональные числа и золотую пропорцию?

Никто уже не ответит на эти вопросы. В истории науки нередки случаи, когда какие-либо открытия забывались, терялись и вновь возрождались другими учеными, и об их действительном авторстве можно только предполагать. Как указывает Матила Гика, китайцы уже в XI веке до нашей эры были знакомы с теоремой 52=32+42.

Плутарх отмечает, что площадь треугольника со сторонами 5:4:3 равна 6, а кубическое этой площади равно сумме кубов сторон треугольника: 63=53+43+33. Было предложено применять отношение 52=42+32 в числе инвариант для создания первого «логического контакта при наступлении эры межпланетной сигнализации».

Нетрудно доказать, что существует только один прямоугольный треугольник, стороны которого (x, y, z) образуют геометрическую прогрессию: z/y=y/x. В этом треугольнике отношение гипотенузы к малому катету равно золотой пропорции Ф, а два других отношения сторон (z/y и y/x) отвечает корню квадратному из золотой пропорции. Это – удивительный «золотой» треугольник, он является ярким выражением золотой пропорции.

Рассмотрим одно семейство равнобедренных треугольников, построенных по правилам золотой пропорции: остроугольный – с углами 36˚, 72˚ и 72˚ и тупоугольный – с углами 108˚, 36˚ и 36˚. Из рисунка видно, что остроугольный треугольник ABC разбивается на три треугольника золотой пропорции. В них стороны равны: AD=1, DB=Ф, BC=AB=Ф+1=Ф2, AC=AE=Ф.

Интересен еще один замечательный треугольник, в котором проявляется золотая пропорция. В этом треугольнике углы равны 90˚, 54˚ и 36˚, а их отношение составляет 5:3:. В этом прямоугольном треугольнике отношение большего катета к гипотенузе равно половине золотой пропорции Ф/2. Это отвечает равенству Ф/2=cos 36˚. Отсюда вытекает формула, связывающая золотую пропорцию с числом π:

Ф = (√5+1)/2 = 2 cos π/5

Эта простая и по-своему красивая формула связывает число «пи» с золотой пропорцией. Не свидетельствует ли это о фундаментальности золотой пропорции, о ее родстве с таким универсальным числом, как «пи»? Характерно, что в рассмотренном треугольнике отношение углов отвечает отношению небольших целых чисел 5:3:2 (где величина одного угла равна сумме двух других), а отношения сторон несоизмеримы. Что кроется в этой «таинственности числовых соотношений»?

В формуле Ф = (√5+1)/2 = 2 cos π/5 дважды встречается число «пять». И угол 36˚ является углом при вершинах пятиконечного звездчатого многоугольника. Очевидно, не случайно число «пять» у пифагорейцев считалось священным, а пятиугольная звезда – символом союза пифагорейских философов и математиков. Оно же считалось в древности символом жизни. Геометрию пятигранника и звездчатого пятиугольника изучали многие математики.

На рисунке среди отрезков HJ, EH, EJ, EB отношение каждого последующего к предыдущему равно золотой пропорции. Пачоли нашел в пяти Платоновых телах – отрезков EB/EA, AJ/JK, AK/AJ. Здесь же содержится треугольник с углами 90˚, 54˚ и 46˚, который был рассмотрен выше.

В 1509 году в Венеции современник и друг Леонардо да Винчи Лука Пачоли издал книгу «О божественной пропорции». Пачоли нашел в пяти Платоновых телах – правильных многоугольниках (тетраэдр, куб, октаэдр, икосаэдр и додекаэдр) тринадцать проявлений «божественной» пропорции. В главе « О двенадцатом, почти сверхъестественном свойстве» он рассматривает правильный икосаэдр. В каждой вершине икосаэдра сходятся пять треугольников, образуя правильный пятиугольник. Если соединить между собой любые два противоположных ребра икосаэдра, получится прямоугольник, у которого большая сторона так относится к меньшей, как сумма сторон к большой.

Таким образом, золотая пропорция проявляется в геометрии пяти правильных многогранников, которые, по представлениям ученых древности, лежат в основе мироздания. Платон считал, что атомы четырех элементов, из которых построен мир (огня, земли, воздуха и воды), имеют форму правильных выпуклых многогранников – тетраэдра, куба, октаэдра, икосаэдра, а весь мир в целом построен в форме додекаэдра.

Числа Фибоначчи.

Усилием математиков золотая пропорция была объяснена, изучена и глубоко проанализирована. Казалось бы, вопрос исчерпан. Оставалось лишь изучать проявления этой закономерности в природе, искать ее практическое применение. Возможно, так бы и произошло, если бы не появилась в истории математики одна незаменимая задача.

В период Средневековья появление книги по математике, написанной в 1202 году итальянским математиком Леонардо из Пинзы, явилось важным событием в «научной жизни общества». В книге "Liber abacсi" ("Книга об абаке") были собраны известные в то время сведения о математике, приводились примеры решения всевозможных задач. И среди них была простая. Не лишенная практической ценности для предприимчивых итальянцев, задача о кроликах: "Сколько пар кроликов в один год от одной пары рождается?" Далее в задаче поясняется, что природа кроликов такова, что через месяц пара их производит на свет другую пару, а начинают размножаться кролики со второго месяца после своего рождения. В результате решения этой немудреной задачи получился ряд чисел 1, 2, 3, 3, 8, 13, 21, 34, 55, 89, 144 и так далее. Этот ряд чисел был позже назван именем Фибоначчи, так называли Леонардо (Fibonacci – сокращенное filius Bonacci, то есть Боначчи).

Чем же примечательны числа, полученные Леонардо Фибоначчи? Рассмотрим этот ряд чисел: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 277, 610, 987, 1597 и так далее. В этом ряду каждое последующее число является суммой двух предыдущих чисел.

Такие последовательности, в которых каждый член является функцией предыдущих, называют в математике рекуррентными, или возвратными последовательностями. Рекуррентным является и ряд чисел Фибоначчи, а члены этого ряда называют числами Фибоначчи. Оказалось, что они обладают рядом интересных и важных свойств.

Спустя четыре столетия после открытия Фибоначчи ряда чисел И. Кеплер (1571 – 1630) установил, что отношение рядом стоящих чисел в пределе стремится к золотой пропорции. На языке математики это выражается формулой Un+1/Un→Ф при n→ ∞. Здесь Ф=1,61803 является золотой пропорцией.

Через сто лет английский ученый Р. Симпсон математически строго доказал, что отношение рядом расположенных чисел Фибоначчи в пределе стремится к золотой пропорции, равной (√5+1)/2. И лишь в 1843 году математик Ж. Бине нашел формулу для отыскания любого члена ряда чисел Фибоначчи.

Определим отношение рядом расположенных чисел Фибоначчи: оно равно 2, 1,5; 1,66; 1,6; 1,625;1,615. , 1,619, 1,6181 и т. д. Полученные отношения как бы колеблются около постоянной величины, постепенно приближаются к ней, разница между соседними отношениями уменьшается. Это наглядно видно на графике. Отношение рядом расположенных чисел Фибоначчи в пределе стремится к величине, близкой 1,618. , то есть золотой пропорции.

Соотношение рядом стоящих чисел Фибоначчи отражает колебательный процесс, осцилляцию, строго периодическое с уменьшающейся амплитудой уменьшение разницы в отношениях этих чисел, затухающее колебание этих отношений относительно величины Ф – золотой пропорции.

Величина Ф считается иррациональным числом, то есть несоизмеримым его нельзя выразить через отношения целых чисел. Но при развертывании ряда чисел Фибоначчи их отношение будет все ближе к золотой пропорции (точнее, бесконечно близко к ней). Выходит, что рациональная величина Ф равна отношению двух бесконечно больших чисел, то есть она соизмерима. Здесь проявляется еще одна интересная грань взаимосвязи целых чисел Фибоначчи с иррациональной золотой пропорцией.

А теперь сложим расположенные через одно числа Фибоначчи. Получим новый ряд чисел: 3, 4, 7, 11, 18, 29, 47, 123 и т. д. Как видим, получим также рекуррентный ряд чисел; отношение соседних чисел здесь также в пределе стремится к золотой пропорции.

Этот производный рекуррентный ряд чисел можно получить из ряда чисел Фибоначчи и другим способом. При последовательном закономерном делении последующих чисел ряда Фибоначчи на предыдущие получим: 1:1=3; 3:1=3; 8:2=4; 21:3=7; 55:5=11 и т. д. , то есть производимый рекуррентный ряд, получивший название "ряд Люка". Сложив расположенные через одно числа ряда Люка, получим новый производный рекуррентный ряд: 15, 25, 40, 65, 105 и т. д. Разделив числа этого ряда на пять, получим исходный ряд чисел Фибоначчи.

Числа Фибоначчи обладают многими интересными свойствами. Так, сумма всех чисел ряда от первого до Un равна следующему через одно число (Un+2) без единицы. Легко показать и проверить на примерах, что отношение расположенных через одно чисел Фибоначчи стремится к квадрату золотой пропорции, равному 2,618033 Удивительное свойство! Получается, что Ф + 1 = = Ф2. Но ведь это соотношение имеет место в совершенном прямоугольном треугольнике с углом около 51˚50΄. Это же уравнение связывает отрезки целого, разделенного на две части в соответствии с золотой пропорцией. Невидимая, но прочная связь общих закономерностей соединила в логически единую стройную систему совершенные геометрические фигуры, пирамиды Египта, задачу о размножении кроликов

Французский математик Паскаль (1623 – 1662) построил числовую таблицу, имеющую форму треугольника; в ней каждая строчка получается из предыдущей путем удвоения каждого из чисел строчки. Эта таблица получила название "треугольник Паскаля". Сумма чисел n-й строки треугольника Паскаля равна 2n, т. е. суммы чисел в строчках возрастают в степенной зависимости, удваиваясь в каждой последующей строчке.

Такой характер построения треугольника Паскаля отвечает наиболее простому размножению организмов в биологии, например, делению клеток. Каждая клетка в результате деления превращается в две клетки, которые, в свою очередь, делятся на две клетки и т. д.

Треугольник Паскаля обладает многими интересными свойствами. Все строки его симметричны. Между суммами чисел в столбцах установлена следующая зависимость: если из большего числа вычесть рядом стоящее меньшее, получим следующее число в ряду сумм. Установлена связь чисел ряда Фибоначчи с треугольником Паскаля. Если провести диагональ треугольника Паскаля, то суммы чисел на этих диагоналях составят ряд чисел Фибоначчи.

Задача о кроликах, очевидно, выражает некоторую общую закономерность роста, свойственную всем организмам, самой жизни. Поэтому закономерности ряда чисел Фибоначчи и порожденная ими золотая пропорция должны в той или иной форме проявляться в самых различных организмах: в их строении, эволюции, функционировании. И действительно, исследования ученых в самых разнообразных областях природы привели к открытию в них закономерностей, отвечающих числам Фибоначчи и золотой пропорции. Где только не находили числа Фибоначчи! И в картинах художников, и в кардиограмме, и в строении почвы, и в деятельности мозга

Метод золотой пропорции и "метод Фибоначчи" в настоящее время находят применение и в методологии научного исследования. Оказалось, что эти методы являются эффективным средством последовательного поиска оптимальных решений, экстремума некоторых функций. Ведь природа во многих случаях действует по строго очерченной системе, реализуя поиск оптимальных структурных состояний не "вслепую", а более сложно, пользуясь "методом Фибоначчи".

Формула красоты

Сколько художников, поэтов, скульпторов, истинных ценителей прекрасного восхищались красотой человеческого тела! «Красивейшие человеческие тела во всех положениях, смелых до невероятности, стройных до музыки – да это целый мир, перед откровением которого невольный холод восторга и страстного благоговения пробегает по всем жилам», - писал И. С. Тургенев. «Человеческое тело – лучшая красота на земле», - утверждал Н. Г. Чернышевский. «Обнаженное тело кажется мне прекрасным. Для меня оно – чудо, сама жизнь, где не может быть ничего безобразного», - говорил О. Роден.

Эталонами красоты человеческого тела, образцами гармонического телосложения издавна и по праву считаются великие творения скульпторов: Фидия, Поликтета, Мирона, Праксителя. В создании своих творений греческие мастера использовали принцип золотой пропорции. Центр золотой пропорции строения человеческого тела расположился точно в месте пупка.

«Формула красоты» - в самом непосредственном, математическом смысле – стала для многих антропологов целью многолетних трудов. Таких «формул» известно немало.

Уже тысячелетия пытаются люди найти математические закономерности в пропорциях тела человека, прежде всего человека, хорошо сложенного, гармоничного. Гармоничность телосложения создает впечатление о соразмерности всех его частей, которая может быть выражена простыми числовыми соотношениями. Для анализа этих соотношений нужна была единица измерения, какая-то часть тела.

Еще в Древнем Египте за единицу измерения тела принимали длину стопы, в более поздние времена – длину среднего пальца руки. Легко убедиться, что высота человека составляет в среднем 7 длин его стопы. В эпоху Возрождения интерес к изучению пропорций человеческого тела возрос. Леонардо да Винчи предпринял ряд измерений, из которых он вычислил средние размеры человека. В качестве единиц измерений пропорций тела он принял голову, но не всю длину черепа, а только длину лица. А Дюрер принимал за единицу измерения всю длину черепа. Французский анатом Рише установил закон о 7 ½ - кратной длине головы.

Многие пропорции человеческого тела можно выразить отношением целых чисел, если пренебречь некоторой погрешностью. Для этого можно воспользоваться средними статистическими данными населения нашей страны. Эти данные для мужчин и женщин существенно различаются и приводятся раздельно. Вот некоторые из них (для мужчин и женщин): рост 1660 и 1567, длина руки – 723 и 661, длина ноги – 900 и 835, высота линии талии – 1035 и 976, высота колена – 506 и 467, ширина плеч – 380 и 349, рост, сидя – 1310 и 1211, длина бедра – 590 и 568 мм. Используя эти статистические данные, можно рассчитать пропорции различных частей тела, например, по отношению к росту человека. Полученные таким образом пропорции оказались очень близкими к целочисленным отношениям

В середине прошлого века английский ученый Эдинвург построил канон пропорций человеческого тела на основе музыкального аккорда. Интересно, что идеальное, с точки зрения этого канона, мужское тело оказалось, по его мнению, соответствующим мажорному аккорду, а женское – минорному.

Рассчитанные пропорции тела человека расширяют антропометрические данные, дают новые характеристики для анализа и сравнения, но они пока лишены физического содержания. Исключение представляет только отношение роста к высоте линии талии. Это отношение, известное с древних времен, долго изучалось, и считается одним из основных критериев гармонии человеческого тела. Оно получило различные названия: золотое сечение, золотая пропорция, божественное отношение и др. Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений лишь она, единственная и неповторимая, обладает уникальными свойствами. Мною было проведено исследование, цель которого – выяснить, распространяется ли правило «золотой» пропорции на современных подростков. Данные этой таблицы свидетельствуют о том, что «золотая» пропорция действительно существует.

Золотая пропорция занимает ведущее место в художественных канонах Леонардо да Винчи и Дюрера. В соответствии с этими канонами золотая пропорция отвечает не только делению тела на две неравные части линией талии. Лицо человека было создано природой также по правилу золотой пропорции. Так, высота лица относится к вертикальному расстоянию между дугами бровей и нижней частью подбородка, так же, как расстояние между нижней частью носа и нижней частью подбородка относится к расстоянию между углами губ и нижней частью подбородка. Это отношение равно золотой пропорции.

Пальцы человека состоят из трех фаланг: основных, средних и ногтевых. Длина основных фаланг всех пальцев, кроме большого, равна сумме длин двух остальных фаланг. В этом легко убедиться с помощью несложных измерений. Так, например, длина основной фаланги моего указательного пальца 4,2 см. Длины средней и ногтевой фаланг соответственно 2,3 и 1,9 см. При сложении последних данных мы и получаем длину основной фаланги.

Кроме того, длины всех фаланг каждого пальца соотносятся друг к другу по правилу золотой пропорции.

В эпоху итальянского Возрождения золотая пропорция была возведена в ранг главного эстетического принципа, однако позже она была предана забвению, и около200 лет о ней никто не вспоминал.

В 1850 году немецкий ученый Цейзинг открыл золотую пропорцию снова. Он обнаружил, что все тело человека в целом и каждый отдельный его член связаны математически строгой системой пропорциональных отношений, среди которых золотое сечение занимает важное место. Измерив тысячи человеческих тел, он установил, что средняя пропорция мужского тела близка к 13:8 = 1,625, а женского – к 8:3 = 1,60. Аналогичные значения получены и при анализе антропометрических данных населения России.

Характерно, что пуп делит тело новорожденного на две равные части и пропорции тела лишь постепенно, ко времени завершения роста, достигают своего конечного развития, отвечающего золотой пропорции (существует поверье, что в два года рост ребенка соответствует половине будущего роста взрослого человека). Все это дает основание считать золотую пропорцию некоторой «константой гармонии», идеальным пределом, к которому стремится тело человека в своем развитии. Однако для тела человека характерно не только «стремление» к золотой пропорции, но и отклонение от нее, связанное с половыми и индивидуальными различиями людей, своеобразные «вариации на тему золотой пропорции».

Общепринято мнение, что золотая пропорция является не только мерилом гармонии в природе и в произведениях искусства, но и основой красоты, источником эстетического удовлетворения. Понятие красоты, прекрасного значительно шире, вариантнее, чем понятие гармонии и упорядоченности. Совершенная симметрия и пропорциональность могут не отвечать эталонам красоты, они совершенны, но мертвы, и лишь разнообразные отклонения от этих статичных канонов придают живость, неповторимую индивидуальность, прелесть и грацию творениям природы и художника. Поэтому и понятие красоты человеческого тела выходит за рамки геометрических канонов, но эти каноны составляют некую основу, на которой создается гармоническое и прекрасное тело.

К понятию «золотая пропорция» в наибольшей степени подходит определение «формула красоты». Действительно, эта пропорция обладает наиболее отчетливыми признаками гармоничности прекрасного. Эта пропорция знаменует собой как бы вершину эстетических изысканий, некий предел гармонии природы. Эта пропорция не только является господствующей во многих произведениях искусства, она определяет закономерности развития многих организмов, ее присутствие отмечают почвоведы, химики, геологи и астрономы.

Такая универсальность золотой пропорции не делает ее простой и доступной для изучения. Многое в сущности этой «константы гармоничности» остается неизведанным. Еще неясно, почему Природа предпочла эту пропорцию всем другим – не за ее ли уникальность?

Характерно, что золотая пропорция отвечает делению целого на две неравные части, следовательно, она отвечает асимметрии. Почему же она так привлекательна, часто более привлекательна, чем симметричные пропорции? Очевидно, эта пропорция обладает каким-то особым свойством. Целое можно поделить на бесконечное множество неравных частей, но только одно из таких сечений отвечает золотой пропорции. По-видимому, в этой пропорции скрыта одна из фундаментальных тайн природы, которую еще предстоит открыть.

Но человеческая красота во все времена являлась предметом длительного изучения разных наук. Идеалы красоты не вечны и со сменой эпохи под понятием «красивый человек» подразумевают совершенно разное. Красота человеческого тела биологически целесообразна, но не вечна. Также в ходе работы мне удалось выяснить, что красота человеческого тела биологически целесообразна, но не вечна, что современные идеалы, которые нам навязывают, противоречат биологическим закономерностям.

Золотая пропорция – понятие математическое, ее изучение – это, прежде всего задача науки. Она так же является критерием гармонии и красоты, а это уже категории искусства. Но ведь в конечном итоге искусство – не противник, а союзник науки.

"Золотая пропорция" в растительном мире.

Как во всех частях природы, так и во флоре золотая пропорция есть, и она не осталась незамеченной. Растительный мир довольно разнообразен, изменчив и подвижен. Если число минеральных видов в земной коре исчисляется двумя тысячами, то число видов растений – миллионами. А какое разнообразие форм, видов и окрасок! Казалось бы, между живой и неживой природой нет ничего общего, это скорее антиподы, чем родственники. Но не стоит забывать о том, что живая природа возникла из неживой и должна была по законам наследственности сохранить какие-то черты своей прародительницы.

Мир неживой природы – это, прежде всего мир симметрии. Поэтому симметрия также была унаследована и живой природой. Достаточно взглянуть на растения, и вы увидите строго симметричные цветы и листья, многие плоды и даже сами растения с их симметрично-винтовым расположением листьев на стержне ствола.

Еще в конце прошлого века немецкий ботаник Ф. Людвиг обнаружил, что кривые, описывающие числа краевых цветков в корзинках многих видов растений, не плавные, а ломанные, они имеют многовершинный характер, причем основные максимумы (моды) этих кривых соответствуют числу цветков 3, 5, 8, 13, 21, 34 , то есть образует ряд чисел Фибоначчи. Для получения достаточно достоверных данных Ф. Людвиг исследовал 18 573 цветка. У одного из видов растений оказалось, что основные максимумы числа краевых цветков падают на числа 13, 21 и 34. Кроме основных максимумов, на многовершинном графике видны менее выраженные пики при 26, 28 и 39 цветках.

Установленный Людвигом закон свидетельствует о том, что число органов у растений изменяется не непрерывно, принимая любые значения, а дискретно, скачками, предпочитая одни величины другим, и этими дискретными величинами являются числа Фибоначчи. Особенно четко проявляются числа Фибоначчи в расположении листьев на побегах.

Есть все основания констатировать существование у растений определенного типа изменчивости числа и расположения органов, который математически описывается рядом чисел Фибоначчи, "содержащим алгоритм закономерно изменяющегося шага дискретности – кванта числа органов", как писал В. Шмидт. Растения развиваются явно "по Фибоначчи", стремясь к некоторому пределу, к гармонической организации. Отношение чисел в двух рядах в пределе стремится к величинам 0, 618034 или 0,381966, то есть к частям целого, разделенного на две части по правилу золотой пропорции.

Но не только расположение листьев на стволе растений носит дискретный характер, но и рост растений; растения подчинены внутренней квантованности роста. Здесь проявляются еще мало изученные закономерности временной организации развивающихся растений. При неизменных и благоприятных внешних условиях интенсивности роста изменяется во времени: периоды интенсивного роста сменяются периодами относительного покоя, стабильности состояния. Можно предполагать, что в длительностях периода роста также будет проявляться некоторая закономерность, которая, возможно, связана с развертыванием ряда чисел Фибоначчи во времени. Ведь в развитии растений есть начало и конец, есть качественное различие стадий роста, его направленность к некоторому конечному состоянию.

Неудивительно, что закономерности золотой пропорции и чисел Фибоначчи так широко распространены в природе, проявляются на самых различных уровнях развития. Эти закономерности являются критериями гармонической организации различных систем. В золотой пропорции и числах Фибоначчи – ключ к гармонии систем, "золотой ключик", открывающий дверь в страну гармонии и красоты.

Заключение.

Идея Пифагора выразить законы природы в виде отношений чисел, причем чисел небольших, оказалась удивительно живучей и плодотворной. Уже многие столетия ученые самых различных областей знаний пытаются выразить установленные закономерности простыми формулами и числовыми отношениями

Однако при глубоком изучении оказалось, что природа одновременно и проста и сложна, что эти характеристики находятся в единстве и поиски простоты лишь выражают стремление науки. Если рассудить, то понятно, что люди не могут создавать модели природы такие же сложные, как и сама природа. Их цель – увидеть простое в сложном, не забывая о сложности простого.

Поиск общих закономерностей природы является, очевидно, наиболее увлекательной областью познания. В таких закономерностях и проявляется единство природы и единство наук. Идея такого единства, отраженного в наличии общих количественных и качественных отношений, в существовании общих формул и чисел, сохранила свою актуальность от Пифагора и до наших дней.

Аристотель писал, что у пифагорейцев "число есть сущность всех вещей, и организации Вселенной в ее определениях представляет собой вообще гармоническую систему чисел и их отношения". После Алкмеона в системе пифагорейцев "выступает в качестве универсального ключа к объяснению мира".

Прошли века и тысячелетия после Пифагора, были открыты тысячи важнейших законов и закономерностей, и, как оказалось, многие из них описываются целыми числами и их отношениями.

На протяжении своего существования человек учился у природы в своем творчестве. Он жил в гармонии с ней. Сегодняшний человек далеко ушел от природы, потерял связь с нею. Созданная им "окружающая среда" – мир дисгармонии, мир, чуждый естественной природе человека.

Но времена меняются. Люди начали осознавать, что природа рано или поздно будет утеряна навсегда, поэтому они вновь возвращаются к природе и ищут гармонию с ней, что неизбежно. В природе есть свои законы и закономерности. А человек является частью природы, ее созданием, поэтому он подчиняется ей. Достигнув прежней гармонии с природой, человек придет к новому витку эволюционной спирали развития!

Все в мире связано в единое начало: В движенье волн - шекспировский сонет, В симметрии цветка - основы мирозданья, А в пенье птиц - симфония планет. Живая природа в своем развитии стремилась к наиболее гармоничной организации, критерием которой является золотая пропорция, проявляясь на самых различных уровнях - от атомных сочетаний до строения тел высших животных.


В природе существует много такого, что не может быть ни достаточно глубоко понято, ни достаточно убедительно доказано, ни достаточно умело и надежно использовано на практике без помощи вмешательства математики. Ф. Бэкон Красота скульптуры, красота храма, красота картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки (разве он не прекрасен?!) до красоты обнаженного человеческого тела.


Из многих отношений, которыми издавна пользовался человек при создании гармонических произведений, существует одно, единственное и неповторимое, обладающее уникальными свойствами. Оно отвечает такому делению целого на две части, при котором отношение большей части к меньшей равно отношению целого к большей части. Эту пропорцию называли по- разному - "золотой", "божественной". Древнейшие сведения о ней относятся ко времени расцвета античной культуры. О золотой пропорции упоминается в трудах великих философов Греции Пифагора, Платона, Евклида. Пифагора Платона,Евклида


Художник и инженер Леонардо да Винчи, изучавший и восхвалявший золотую пропорцию на протяжении всей своей жизни, называет ее "золотое сечение". Название Леонардо да Винчи сохранилось и сегодня. Леонардо да Винчи


Принципы формообразования в природе Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали. Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.


Спираль Архимеда Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.


Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филлотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».


Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.


Интерес человека к природе привёл к открытию её физических и математических закономерностей. Красота природных форм рождается во взаимодействии двух физических сил – тяготении и инерции. Золотая пропорция – это математический символ этого взаимодействия, поскольку выражает основные моменты живого роста: стремительный взлёт юных побегов сменяется замедленным ростом «по инерции» до момента цветения. Рассматривая расположение листьев на общем стебле многих растений, можно заметить, что между каждыми двумя парами листьев третья расположена в месте золотого сечения. Точка С делит отрезок АВ в золотом отношении, точка Е делит отрезок DA в золотом отношении и так далее. Золотую спираль также можно заметить в созданиях природы.


Рассмотрим расположение семечек в корзине подсолнуха. Они выстраиваются вдоль спиралей, которые закручиваются как слева направо, так и справа налево. В одну сторону у среднего подсолнуха закручено 13 спиралей, в другую – 21. Отношение 13/21 равно j. У более крупных соцветий подсолнуха число соответствующих спиралей больше, но отношение числа спиралей, закручивающихся в разных направлениях также равно числу j.



Похожее спиральное расположение наблюдается у чешуек сосновых шишек или ячеек ананаса. По золотой спирали свёрнуты раковины многих улиток и моллюсков, некоторые пауки, сплетая паутину, закручивают нити вокруг центра по золотым спиралям. Рога архаров закручиваются по золотым спиралям.


Из всего сказанного можно сделать выводы: во-первых, золотое сечение – это один из основных основополагающих принципов природы; во-вторых, человеческое представление о красивом явно сформировалось под влиянием того, какой порядок и гармонию человек видит в природе.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта