Главная » Карьера » Расчеты в i d диаграмме. Диаграмма молье. Угловой коэффициент луча процесса на j-d диаграмме

Расчеты в i d диаграмме. Диаграмма молье. Угловой коэффициент луча процесса на j-d диаграмме

После прочтения данной статьи, рекомендую прочитать статью про энтальпию , скрытую холодопроизводительность и определение количества конденсата, образующегося в системах кондиционирования и осушения :

Доброго времени суток уважаемые начинающие коллеги!

В самом начале своего профессионального пути я наткнулся на данную диаграмму. При первом взгляде она может показаться страшноватой, но если разобраться в главных принципах, по которым она работает, то можно её и полюбить:D. В быту она называется и-д диаграмма.

В данной статье я попытаюсь просто(на пальцах) объяснить основные моменты, чтобы вы потом отталкиваясь от полученного фундамента самостоятельно углубились в данную паутину характеристик воздуха.

Примерно так она выглядит в учебниках. Как-то жутковато становится.


Я уберу все то лишнее, что не будет мне нужным для моего объяснения и представлю и-д диаграмму в таком виде:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Все равно еще не совсем понятно, что это такое. Разберем её на 4 элемента:

Первый элемент - влагосодержание (D или d). Но прежде чем я начну разговор об влажности воздуха в целом, я бы хотел кое о чем с вами договориться.

Давайте договоримся “на берегу” сразу об одном понятии. Избавимся от одного прочно засевшего в нас (по крайней мере, в меня) стереотипа о том, что такое пар. С самого детства мне показывали на кипящую кастрюлю или чайник и говорили, тыкая пальцем на валящий из сосуда “дым”: “ Смотри! Вот это пар”. Но как многие, дружащие с физикой люди, мы должны понимать, что “Водяной пар — газообразное состояние воды . Не имеет цвета , вкуса и запаха”. Это всего лишь, молекулы H2O в газообразном состоянии, которых не видно. А то что мы видим, валящее из чайника - это смесь воды в газообразном состоянии(пар) и “капелек воды в пограничном состоянии между жидкостью и газом”, вернее видим мы последнее (так же, с оговорками, можно назвать то что мы видим - туманом). В итоге мы получаем, что в данный момент, вокруг каждого из нас находится сухой воздух (смесь кислорода, азота…) и пар (H2O).

Так вот, влагосодержание говорит нам о том, сколько этого пара присутствует в воздухе. На большинстве и-д диаграмм данная величина измеряется в [г/кг], т.е. сколько грамм пара(H2O в газообразном состоянии) находится в одном килограмме воздуха (1 кубический метр воздуха в вашей квартире весит около 1,2 килограмма). В вашей квартире для комфортных условий в 1 килограмме воздуха должно быть 7-8 грамм пара.

На и-д диаграмме влагосодержание изображается вертикальными линиями, а информация о градации расположена в нижней части диаграммы:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Второй важный для понимания элемент - температура воздуха (T или t). Думаю здесь ничего объяснять не нужно. На большинстве и-д диаграмм данная величина измеряется в градусах Цельсия [°C]. На и-д диаграмме температура изображается наклонными линиями, а информация о градации расположена в левой части диаграммы:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Третий элемент ИД-диаграммы - относительная влажность (φ ). Относительная влажность, это как раз та влажность, о которой мы слышим из телевизоров и радио, когда слушаем прогноз погоды. Измеряется она в процентах [%].

Возникает резонный вопрос: “Чем отличается относительная влажность от влагосодержания?” На данный вопрос я отвечу поэтапно:

Первый этап:

Воздух способен вмещать в себя определенное количество пара. У воздуха есть определенная “паровая грузоподъемность”. Например, в вашей комнате килограмм воздуха может “взять на свой борт” не больше 15 грамм пара.

Предположим, что в вашей комнате комфортно, и в каждом килограмме воздуха, находящегося в вашей комнате, имеется по 8 грамм пара, а вместить каждый килограмм воздуха в себя может по 15 грамм пара. В итоге мы получаем, что в воздухе находится 53,3% пара от максимально возможного, т.е. относительная влажность воздуха - 53,3%.

Второй этап:

Вместимость воздуха различна при разных температурах. Чем выше температура воздуха, тем больше пара он может в себя вместить, чем ниже температура, тем меньше вместимость.

Предположим, что мы нагрели воздух в вашей комнате обычным нагревателем с +20 градусов до +30 градусов, но при этом количество пара в каждом килограмме воздуха осталось прежним - по 8 грамм. При +30 градусах воздух может “взять себе на борт” до 27 грамм пара, в итоге в нашем нагретом воздухе - 29,6% пара от максимально возможного, т.е. относительная влажность воздуха - 29,6%.

Тоже самое и с охлаждением. Если мы охладим воздух до +11 градусов, то мы получим “грузоподъемность” равную 8,2 грамм пара на килограмм воздуха и относительную влажность равную 97,6%.

Заметим, что влаги в воздухе было одинаковое количество - 8 грамм, а относительная влажность прыгала от 29,6% до 97,6%. Происходило это из-за скачков температуры.

Когда вы зимой слышите о погоде по радио, где говорят, что на улице минус 20 градусов и влажность 80%, то это значит, что в воздухе около 0,3 граммов пара. Попадая к вам в квартиру этот воздух нагревается до +20 и относительная влажность такого воздуха становится равна 2%, а это очень сухой воздух (на самом деле в квартире зимой влажность держится на уровне 10-30% благодаря выделениям влаги из сан-узлов, из кухни и от людей, но что тоже ниже параметров комфорта).

Третий этап:

Что произойдет, если мы опустим температуру до такого уровня, когда “грузоподъемность” воздуха будет ниже, чем количество пара в воздухе? Например, до +5 градусов, где вместимость воздуха равна 5,5 грамм/килограмм. Та часть газообразного H2O, которая не умещается в “кузов” (у нас это 2,5 грамм), начнет превращаться в жидкость, т.е. в воду. В быту особенно хорошо виден этот процесс, когда запотевают окна в связи с тем, что температура стекол ниже, чем средняя температура в комнате, на столько что влаге становится мало места в воздухе и пар, превращаясь в жидкость, оседает на стеклах.

На и-д диаграмме относительная влажность изображается изогнутыми линиями, а информация о градации расположена на самих линиях:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Четвертый элемент ID диаграммы - энтальпия (I или i). В энтальпии заложена энергетическая составляющая тепловлажностного состояния воздуха. При дальнейшем изучении (за пределами этой статьи, например в моей статье про энтальпию ) стоит обратить на неё особое внимание, когда речь будет заходить об осушении и увлажнении воздуха. Но пока особого внимания на этом элементе мы заострять не будем. Измеряется энтальпия в [кДж/кг]. На и-д диаграмме энтальпия изображается наклонными линиями, а информация о градации расположена на самом графике (или слева и в верхней части диаграммы).

I-d диаграмма влажного воздуха была создана в 1918 году Л.К. Рамзиным. Плодами труда этого русского учёного пользуются до сих пор. Его диаграмма в настоящее время остаётся верным и надёжным инструментом при расчётах основных свойств влажного воздуха.

Так как расчёт изменения состояния атмосферного воздуха связан с проведением сложных вычислений, то обычно пользуются более простым и удобным методом. Т.е. применяют Рамзина, которую ещё называют психрометрической диаграммой.

В координатах i-d диаграммы нанесены зависимости основных параметров влажного воздуха. Это температура, влагосодержание, относительная влажность, энтальпия. При заданном барометрическом давлении по оси ординат откладывают энтальпию на 1 кг сухого воздуха (кДж/кг). По оси абсцисс откладывают влагосодержание воздуха в г на 1 кг сухого воздуха.

Система координат i-d диаграммы является косоугольной. Угол между осями равен 135º. Такое расположение осей позволяет расширить область ненасыщенного влажного воздуха. Таким образом, диаграмма становится более удобной для графических построений.

Линии постоянной энтальпии I=const проходят под углом 135º к оси ординат. Линии постоянного влагосодержания d=const проходят параллельно оси ординат.

Образованная линиями I=const и d=const сетка состоит из параллелограммов. На них строят линии изотерм t=const и линии постоянных относительных влажностей φ=const.

Стоит отметить, что хоть изотермы и представляют собой прямые линии, но они вовсе не параллельны между собой. Угол их наклона к горизонтальной оси различен. Чем ниже температура, тем более параллельны изотермы между собой. Линии температур, изображённые на диаграмме, соответствуют значениям по сухому термометру.

Кривую с относительной влажностью φ=100 % строят исходя из данных таблиц насыщенного воздуха. Выше этой кривой на диаграмме располагается область ненасыщенного влажного воздуха. Соответственно ниже этой кривой расположена область перенасыщенного влажного воздуха. Влага насыщенного воздуха, характеризующаяся данной областью, находится в жидком или твёрдом состоянии. Т.е. представляет собой туман. Данная область диаграммы не используется в расчётах характеристик влажного воздуха, поэтому её построение опускается.

Все точки диаграммы характеризуют конкретное состояние влажного воздуха. Чтобы определить положение любой точки нужно знать два параметра состояния влажного воздуха из четырёх - I, d, t или φ.

Влажный воздух в любой точке i-d диаграммы характеризуется определённым влаго- и теплосодержанием. Все точки расположенные выше кривой φ=100 %, характеризуют такое состояние влажного воздуха, при котором водяной пар в воздухе находится в перегретом состоянии. Точки, расположенные на кривой φ=100 %, так называемой кривой насыщения, характеризуют насыщенное состояние водяного пара в воздухе. Все точки, распложенные ниже кривой насыщения, характеризуют состояние, при котором температура влажного воздуха ниже температуры насыщения. Следовательно, в воздухе будет находиться влажный пар. Это означает, что влага в воздухе будет состоять из смеси сухого пара и капелек воды.

При решении практических задач i-d диаграмма применяется не только для вычисления параметров состояния воздуха. С её помощью также строят изменения его состояния при процессах нагревания, охлаждения, увлажнения, осушения, а также их произвольном сочетании. В расчётах часто используются такие параметры воздуха как температура точки росы t р и температура мокрого термометра t м. Оба параметра могут быть построены на i-d диаграмме.

Температура точки росы t р - это температура, соответствующая значению до которого должен быть охлаждён влажный воздух, чтобы стать насыщенным при постоянном влагосодержании (d=const). На i-d диаграмме температура точки росы t р определяется следующим образом. Берётся точка, характеризующая заданное состояние влажного воздуха. Из неё проводим параллельно оси ординат прямую до пересечения с кривой насыщения φ=100 %. Та изотерма, которая будет пересекать эту кривую в полученной точке, и будет показывать температуру точки росы t р при заданном влагосодержании воздуха.

Температура мокрого термометра t м - это температура при которой влажный воздух, охлаждаясь становится насыщенным при постоянном влагосодержании. Для определения температуры мокрого термометра на i-d диаграмме делают следующее. Через точку, характеризующую заданное состояние влажного воздуха проводят линию постоянной энтальпии I=const до пересечения с кривой насыщения φ=100 %. Значение температуры мокрого термометра будет соответствовать изотерме, проходящей через точку пересечения.

На i-d диаграмме все процессы перехода воздуха из одного состояния в другое изображаются кривыми, проходящими через точки, характеризующие начальное и конечное состояние влажного воздуха.

Как применять i-d диаграмму влажного воздуха? Как уже говорилось выше для определения состояния воздуха нужно знать любые два параметра диаграммы. Например, возьмем какую-либо температуру по сухому термометру и какую-либо температуру по мокрому термометру. Найдя точку пересечения линий этих температур, получим состояние воздуха при заданных температурах. Таким образом, данная точка чётко характеризует состояние воздуха. Аналогично примеру, по этим температурам можно найти состояние воздуха в любой точке i-d диаграммы.

Нашли ошибку? Выделите её и нажмите Ctrl+Enter . Будем благодарны за помощь.

Л.К.Рамзин построил «i, d » – диаграмму, которая широко используется в расчетах сушки, кондиционирования воздуха в ряде других расчетов, связанных с изменением состояния влажного воздуха. Эта диаграмма выра-жает графическую зависимость основных параметров воздуха (t , φ, p п, d , i ) при заданном барометрическом давлении.

Элементы «i , d » – диаграммы показаны на рис. 7.4. Диаграмма по-строена в косоугольной системе координат с углом между осями i и d 135°. По оси ординат откладываются величины энтальпий и температур воздуха (i , кДж/кг сухого воздуха и t , °С), по оси абсцисс – величины влагосодержаний влажного воздуха d , г/кг.

Рис. 7.4. Примерная «i, d » – диаграмма

Ранее уже упоминалось, что параметры (t °C, i кДж/кг, φ %, d г/кг, p П Па), определяющие состояние влажного воздуха, на «i , d » – диаграмме можно графически изобразить точкой. Например, на рис. ниже точке А соответствуют параметры влажного воздуха: температура t = 27 °С, относительная влажность φ = 35 %, энтальпия i = 48 кДж/кг, влагосодер-жание d = 8 г/кг, парциальное давление пара p П = 1,24 кПа.

Необходимо учитывать тот факт, что полученные графическим путем параметры влажного воздуха соответствуют барометрическому (атмосферному) давлению 760 мм рт. ст., для которого была построена приведенная на рис. «i, d » – диаграмма.

Практика использования графоаналитических расчетов для определения парциального давления пара с помощью «i, d » – диаграмм показывает, что расхождения между полученными результатами (в пределах 1 - 2 %) объясняется степенью точности построения диаграмм.

Если параметры точки А на «i, d » – диаграмме (рис. 7.5) i А ,d А, а конечного Б – i Б, d Б, то отношение (i Б – i А) / (d Б – d А) · 1000 = ε представ-ляет собой угловой коэффициент линии (луча), характеризующий данное изменение состояния воздуха в координатах «i, d » – диаграммы.

Рис. 7.5. Определение углового коэффициента ε с использованием «i, d » – диаграммы.

Величина ε имеет размерность кДж/кг влаги. С другой стороны, в практике использования «i, d » – диаграмм заранее известна полученная расчетным путем величина ε.

В таком случае на «i, d » – диаграмме можно построить луч, соответ-ствующий полученному значению ε. Для этого используют набор лучей, соответствующих различным значениям углового коэффициента и нанесенных по контуру «i, d » – диаграммы. Построение этих лучей произ-водилось следующим образом (см. рис. 7.6).

Для построения углового масштаба рассматривают различные изменения состояния влажного воздуха, приняв при этом одинаковые начальные параметры воздуха для всех рассматриваемых на рисунке 4 случаев – это начало координат (i 1 = 0, d 1 = 0). Если конечные параметры обозначить через i 2 и d 2 , то выражение углового коэффициента можно записать в этом случае

ε = .

Например, принимая d 2 = 10 г/кг и i 2 = 1 кДж/кг (соответствует точке 1 на рис. 1.4), ε = (1/10)·1000 = 100 кДж/кг. Для точки 2 ε = 200 кДж/кг и так далее для всех рассматриваемых точек на рисунке 1.4. Для i = 0 ε = 0, т.е. лучи на «i ,d » – диаграмме совпадают. Аналогичным путем могут быть на-несены лучи, имеющие отрицательные значения угловых коэффициентов.

На полях «i,d » – диаграммы нанесены направления масштабных лучей для значений угловых коэффициентов в пределах от – 30000 до + 30000 кДж/кг влаги. Все эти лучи исходят из начала координат.

Практическое использование углового масштаба сводится к параллельному переносу (например, с помощью линейки) масштабного луча с известным значением углового коэффициента в заданную точку на «i,d » – диаграмме. На рис. показан перенос луча с ε = 100 в точку Б.

Построение на «i, d » – диаграмме углового масштаба.

Определение температуры точки росы t Р и температуры мокрого термометра t М с помощью « i, d » – диаграммы.

Температура точки росы – это температура воздуха в насыщенном состоянии при данном влагосодержании. На «i, d » – диаграмме для определении t Р необходимо из точки данного состояния воздуха (точка А на рис. ниже) опуститься по линии d = const до пересечения с линией насыщения φ = 100 % (точка Б). В таком случае изотерма, проходящая через точку Б, соответствует t Р.

Определение значений t Р и t М на «i,d » – диаграмме

Температура мокрого термометра t М равна температуре воздуха в насыщенном состоянии при данной энтальпии. В «i, d » – диаграмме t М проходит через точку пересечения изотермы с линией φ = 100 % (точка В) и практически совпадает (при параметрах, имеющих место в системах кондиционирования) с линией I = const, проходящей через точку Б.

Изображение процессов нагревания и охлаждения воздуха на « i, d » -диаграмме. Процесс нагревания воздуха в поверхностном теплообменнике – калорифере в «i, d » – диаграмме изображается вертикальной линией АБ (см. рис.ниже) при d = const, так как влагосодержание воздуха при кон-такте с сухой нагретой поверхностью не изменяется. Температура и энтальпия при нагревании увеличивается, а относительная влажность уменьшается.

Процесс охлаждения воздуха в поверхностном теплообменнике-воздухоохладителе может быть реализован двумя путями. Первый путь – охлаждение воздуха при постоянном влагосодержании (процесс а на рис. 1.6). Этот процесс при d = const протекает в том случае, если температура поверхности воздухоохладителя будет выше температуры точки росы t Р. Процесс пройдет по линии ВГ или в крайнем случае – по линии ВГ’.

Второй путь – охлаждение воздуха при уменьшении его влагосодержания, что возможно только при выпадении влаги из воздуха (случай б на рис. 7.8). Условие реализации такого процесса – температура поверхности воздухоохладителя или любой другой поверхности, контак-тирующей с воздухом должна быть ниже температуры точки росы воздуха в точке Д. В этом случае будет происходить конденсация водяного пара в воздухе и процесс охлаждения будет сопровождаться уменьшением влаго-содержания в воздухе. На рис. этот процесс пойдет по линии СЖ, причем точка Ж соответствует температуре t П.В. поверхности воздухоохладителя. На практике процесс охлаждения заканчивается раньше и достигает, например, точки Е при температуре t Е.

Рис. 7.8. Изображение процессов нагревания и охлаждения воздуха на «i, d » – диаграмме

Процессы смешения двух потоков воздуха в « i, d » – диаграмме.

В системах кондиционирования воздуха используются процессы смешения двух потоков воздуха с различным их состоянием. Например, использование рециркуляционного воздуха или смешение подготовлен-ного воздуха с воздухом внутри помещения при подаче его из кондицио-нера. Возможны и другие случаи смешения.

Представляет интерес для расчетов процессов смешения найти связь между аналитическими расчетами процессов и их графическими изображе-ниями на «i, d » – диаграмме. На рис. 7.9 представлены два случая осуществления процессов смешения: а) – точка состояния воздуха на «i, d » – диаграмме лежит выше линии φ = 100 % и случай б) – точка смеси лежит ниже линии φ = 100 %.

Рассмотрим случай а). Воздух состояния точки А в количестве G А с параметрами d А и i А смешивается с воздухом состояния точки В в количес-тве G B c параметрами d B и i B . При этом принимают условие, что расчеты производятся на 1 кг воздуха состояния А. Тогда величиной n = G В /G А оценивают, какое количество воздуха состояния точки В приходится на 1 кг воздуха состояния точки А. Для 1 кг воздуха состояния точки А можно записать балансы теплоты и влаги при смешении

i A + i B = (1 + n )i СМ;

d A + nd B = (1 + n )d СМ,

где i СМ и d СМ – параметры смеси.

Из уравнений получают:

.

Уравнение является уравнением прямой линии, любая точка которой указывает параметры смешения i СМ и d СМ. Положение точки смешения С на прямой АВ может быть найдено по соотношению сторон подобных треугольников АСД и СВЕ

Рис. 7.9. Процессы смешения воздуха в «i, d » – диаграмме. а) – точка смеси лежит выше линии φ = 100 %; б) – точка смеси лежит ниже φ = 100 %.

,

т.е. точка С делит прямую АВ на части, обратно пропорциональные массам смешиваемого воздуха.

Если положение точки С на прямой АВ известно, то можно найти массы G A и G B . Из уравнения следует

,

Аналогично

На практике возможен случай, когда в холодный период года точка смеси С 1 ’ лежит ниже линии φ = 100 %. В этом случае в процессе сме-шения будет иметь место конденсация влаги. Сконденсированная влага выпадает из воздуха и будет находиться после смешения в состоянии насыщения при φ = 100 %. Параметры смеси достаточно точно определя-ются точкой пересечения линии φ = 100 % (точка С 2) и i СМ = const. При этом количество выпавшей влаги равно Δd .

Определять параметры влажного воздуха, а также решать ряд практических вопросов, связанных с сушкой различных материалов, весьма удобно графическим путем с помощью i-d диаграммы, впервые предложенным советским ученым Л. К. Рамзиным в 1918 году.

Строится для барометрического давления 98 кПа. Практически диаграммой можно пользоваться во всех случаях расчета сушилок, так как при обычных колебаниях атмосферного давления значения i и d изменяются мало.

Диаграмма в координатах i-d представляет собой графическую интерпретацию уравнения энтальпии влажного воздуха. Она отражает связь основных параметров влажного воздуха. Каждая точка на диаграмме выделяет некоторое состояние с вполне определёнными параметрами. Для нахождения любой из характеристик влажного воздуха достаточно знать только два параметра его состояния.

I-d диаграмма влажного воздуха построена в косоугольной системе координат. На оси ординат вверх и вниз от нулевой точки (i = 0, d = 0) откладывают значения энтальпии и проводят линии i = const параллельно оси абсцисс, то есть под углом 135 0 к вертикали. При этом изотерма 0 о С в ненасыщенной области располагается почти горизонтально. Что же касается масштаба для отсчета влагосодержания d, то для удобства его сносят на горизонтальную прямую, проходящую через начало координат.

На i-d диаграмму наносят также кривую парциального давления водяного пара. С этой целью используют уравнение:

Р п = В*d/(0,622 + d),

Hешая которое для переменных значений d получаем, что, например при d=0 Р п =0, при d=d 1 Р п =Р п1 , при d=d 2 Р п =Р п2 и т.д. Задаваясь определенным масштабом для парциальных давлений, в нижней части диаграммы в прямоугольной системе осей координат по указанным точкам строят кривую Р п =f(d). После этого на i-d диаграмму наносят кривые линии постоянной относительной влажности (φ = const). Нижняя кривая φ = 100% характеризует состояние воздуха, насыщенного водяным паром (кривая насыщения ).

Также на i-d диаграмме влажного воздуха строятся прямые линии изотерм (t = const), характеризующие процессы испарения влаги с учетом дополнительного количества теплоты, вносимой водой, имеющей температуру 0 о С.

В процессе испарения влаги энтальпия воздуха остается постоянной, так как теплота, отбираемая от воздуха для подсушивания материалов, возвращается обратно к нему вместе с испаренной влагой, то есть в уравнении:

i = i в + d*i п

Уменьшение первого слагаемого будет компенсироваться увеличением второго слагаемого. На i-d диаграмме этот процесс проходит по линии (i = const) и носит условное название процесса адиабатного испарения . Пределом охлаждения воздуха является адиабатная температура мокрого термометра, которую находят на диаграмме как температуру точки на пересечении линий (i = const) с кривой насыщения (φ = 100%).

Или другими словами, если из точки А (с координатами i = 72 кДж/кг, d = 12,5 г/ кг сух. возд., t = 40 °C, V = 0,905 м 3 /кг сух. воз. φ = 27%), выделяющей некоторое состояние влажного воздуха, провести вниз вертикальный луч d = const, то он будет представлять собой процесс охлаждения воздуха без изменения его влагосодержания; значение же относительной влажности φ при этом постепенно нарастает. При продолжении этого луча до пересечения с кривой φ = 100% (точка "В" с координатами i = 49 кДж/кг, d = 12,5 г/ кг сух. возд., t = 17,5 °C, V = 0,84 м 3 /кг сух. воз. j = 100%), мы получаем наименьшую температуру t p (она называется температурой точки росы ), при которой воздух с данным влагосодержанием d ещё способен сохранять пары в неконденсированном виде; дальнейшее понижение температуры приводит к выпадению влаги либо во взвешенное состояние (туман), либо в виде росы на поверхностях ограждений (стенах вагона, продуктах), или инея и снега (трубах испарителя холодильной машины).

Если воздух в состоянии А увлажнять без подвода или отвода тепла (например, с открытой водной поверхности), то процесс характеризующийся линией АС, будет происходить без изменения энтальпии (i = const). Температура t м на пересечении этой линии с кривой насыщения (точка "С" с координатами i = 72 кДж/кг, d = 19 г/ кг сух. возд., t = 24 °C, V = 0,87 м 3 /кг сух. воз. φ = 100%) и есть температура мокрого термометра .

С помощью i-d удобно анализировать процессы, происходящие при смешивании потоков влажного воздуха.

Также i-d диаграмма влажного воздуха широко применятся для расчетов параметров кондиционирования воздуха, под которым понимают совокупность средств и способов воздействия на температуру и влажность воздуха.

Влажный воздух - это смесь сухого воздуха c водяным паром. Свойства влажного воздуха характеризуются следующими основными параметрами: температура по сухому термометру t, барометрическое давление P б, парциальное давление водяного пара P п, относительная влажность φ, влагосодержание d, удельная энтальпия i, температура точки росы t р, температура мокрого термометра t м, плотность ρ.

i-d диаграмма представляет собой графическую зависимость между основными параметрами воздуха t, φ, d, i при определённом барометрическом давлении воздуха P б и используется для визуализации результатов расчёта процессов обработки влажного воздуха.

i-d диаграмма впервые была составлена в 1918 году советским инженером-теплотехником Л. К. Рамзиным.

Диаграмма построена в косоугольной системе координат, что позволяет расширить область ненасыщенного влажного воздуха и делает диаграмму удобной для графических построений. По оси ординат диаграммы отложены значения удельной энтальпии i, по оси абсцисс, направленной под углом 135° к оси i, отложены значения влагосодержания d. Поле диаграммы разбито линиями постоянных значений удельной энтальпии i=const и влагосодержания d=const. На диаграмму нанесены также линии постоянных значений температуры t=const, которые не параллельны между собой, а чем выше температура влажного воздуха, тем больше изотермы отклоняются вверх. На поле диаграммы нанесены также линии постоянных значений относительной влажности φ=const.

Относительной влажностью называется отношение парциального давления водяного пара, содержащегося во влажном воздухе заданного состояния, к парциальному давлению насыщенного водяного пара при той же температуре.

Влагосодержание - это масса водяного пара во влажном воздухе, приходящаяся на 1 кг массы сухой его части.

Удельная энтальпия - это количество теплоты, содержащееся во влажном воздухе при заданных температуре и давлении, отнесённое к 1 кг сухого воздуха.

i-d диаграмма кривой φ=100% разбита на две области. Вся область диаграммы, лежащая выше этой кривой, характеризует параметры ненасыщенного влажного воздуха, а ниже - область тумана.

Туман является двухфахной системой, состоящей из насыщенного влажного воздуха и взвешенной влаги в виде мельчайших капель воды или частичек льда.

Для расчёта параметров влажного воздуха и построения i-d диаграммы используются четыре основных уравнения:

1) Давление насыщенного водяного пара над плоской поверхностью воды (t > 0) или льда (t ≤ 0), кПа:

(3.12)

где α в, β в - постоянные для воды, α в = 17,504, β в = 241,2 °С

α л, β л - постоянные для льда, α л = 22,489, β л = 272,88 °С

2) Относительная влажность φ, %:

(4.7) 6 (23)

где P б - барометрическое давление, кПа

4) Удельная энтальпия влажного воздуха i, кДж/кг с.в.:

6 (32)

Температура точки росы - это температура, до которой нужно охладить ненасыщенный воздух, чтобы он стал насыщенным при сохранении постоянного влагосодержания.

Для отыскания температуры точки росы на i-d диаграмме через точку, характеризующую состояние воздуха, нужно провести линию d=const до пересечения с кривой φ=100%. Температура точки росы является предельной температурой, до которой можно охладить влажный воздух при постоянном влагосодержании без выпадения конденсата.

Температура мокрого термометра - это температура, которую принимает ненасыщенный влажный воздух с начальными параметрами i 1 и d 1 в результате адиабатного тепло- и массообмена с водой в жидком или твёрдом состоянии, имеющей постоянную температуру t в =t м после достижения им насыщенного состояния, удовлетворяющего равенству:

(4.21)

где c в - удельная теплоёмкость воды, кДж/(кг·°C)

Разность i н - i 1 обычно невелика, поэтому процесс адиабатного насыщения часто называют изоэнтальпийным, хотя в действительности i н = i 1 только при t м = 0.

Для отыскания температуры мокрого термометра на i-d диаграмме через точку, характеризующую состояние воздуха, нужно провести линию постоянной энтальпии i=const до пересечения с кривой φ=100%.

Плотность влажного воздуха определяется по формуле, кг/м 3:

(4.25)

где T - температура в градусах Кельвина

Количество теплоты, необходимое для нагревания воздуха, можно рассчитать по формуле, кВт:

Количество теплоты, отводимое от воздуха при охлаждении, кВт:

где i 1 , i 2 - удельная энтальпия в начальной и конечной точках соответственно, кДж/кг с.в.

G с - расход сухого воздуха, кг/с

где d 1 , d 2 - влагосодержание в начальной и конечной точках соответственно, г/кг с.в.

При смешении двух потоков воздуха влагосодержание и удельную энтальпию смеси определяют по формулам:

На диаграмме точка смеси лежит на прямой 1-2 и делит её на отрезки, обратно пропорциональные смешиваемым количествам воздуха:

1-3 = G с2
3-2 G с1

Возможен случай, когда точка смеси 3* окажется ниже линии φ=100%. В этом случае процесс смешения сопровождается конденсацией части содержащегося в смеси водяного пара и точка смеси 3 будет лежать на пересечении линий i 3* =const и φ=100%.

На представленном сайте на странице "Расчёты" можно рассчитать до 8 состояний влажного воздуха с построением лучей процессов на i-d диаграмме.

Чтобы определить начальное состояние, нужно указать два параметра из четырёх (t, φ, d, i) и расход сухого воздуха L с *. Расход задаётся в предположении плотности воздуха 1,2 кг/м 3 . Отсюда определяется массовый расход сухого воздуха, используемый в дальнейших вычислениях. В выходную таблицу выводятся фактические значения объёмного расхода воздуха, соответствующие реальной плотности воздуха.

Новое состояние можно вычислить, определив процесс и задав конечные параметры.

На диаграмме отображаются следующие процессы: нагрев, охлаждение, адиабатическое охлаждение, пароувлажнение, смешение и общий процесс, определяемый двумя любыми параметрами.

Процесс Обозначение Описание
Нагрев O Вводится заданная конечная температура, либо заданная тепловая мощность.
Охлаждение C Вводится заданная конечная температура, либо заданная холодильная мощность. Этот расчет основан на допущении, что температура поверхности охладителя остается неизменной, и начальные параметры воздуха стремятся в точку с температурой поверхности охладителя при φ=100%. Как будто происходит смешение воздуха начального состояния с полностью насыщенным воздухом у поверхности охладителя.
Адиабатическое охлаждение A Вводится заданная конечная относительная влажность, либо влагосодержание, либо температура.
Пароувлажнение P Вводится заданная конечная относительная влажность, либо влагосодержание.
Общий процесс X Вводятся значения двух параметров из четырёх (t, φ, d, i), являющиеся конечными для заданного процесса.
Смешение S Этот процесс определяется без задания параметров. Используются два предыдущих значения расхода воздуха. Если при смешении достигается максимально допустимое влагосодержание, то происходит адиабатическая кондесация водяных паров. В результате вычисляется количество сконденсированной влаги.

ЛИТЕРАТУРА:

1. Бурцев С.И., Цветков Ю.Н. Влажный воздух. Состав и свойства: Учеб. пособие. - СПб.: СПбГАХПТ, 1998. - 146 c.

2. Справочное пособие АВОК 1-2004. Влажный воздух. - М.: АВОК-ПРЕСС, 2004. - 46 с.

3. ASHRAE Handbook. Fundamentals. - Atlanta, 2001.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта