Главная » Здоровье » Колебания численности популяции. Колебания численности и их причины Резкое колебание численности особей в популяции

Колебания численности популяции. Колебания численности и их причины Резкое колебание численности особей в популяции

По достижении заключительной фазы роста размеры популяции продолжают колебаться от поколения к поколению вокруг некоторой более или менее постоянной величины. При этом численность одних видов изменяется нерегулярно с большой амплитудой колебаний (насекомые-вредители, сорняки), колебания численности других (например, мелких млекопитающих) имеют относительно постоянный период, а в популяциях третьих видов численность колеблется от года к году незначительно (долгоживущие крупные позвоночные и древесные растения).

В природе в основном встречаются три вида кривых изменения численности популяции: относительно стабильный, циклический и скачкообразный (рис. 2.23).

Рис. 2.23.

7 - стабильный; 2 - цикличный; 3 - скачкообразный

Виды, у которых численность из года в год находится на уровне поддерживающей емкости среды, имеют достаточно стабильные популяции (кривая /). Такое постоянство характерно для многих видов дикой природы и встречается, например, в нетронутых тропических влажных лесах, где среднегодовое количество осадков и температура изменяются день ото дня и из года в год крайне мало.

У других видов колебания численности популяций носят правильный циклический характер (кривая 2). Хорошо знакомы примеры сезонных колебаний численности. Тучи комаров; поля, заросшие цветами; леса, полные птиц, - все это характерно для теплого времени года в средней полосе и сходит практически на нет зимой.

Широко известен пример циклических колебаний численности леммингов (северных травоядных мышевидных грызунов) в Северной Америке и Скандинавии. Один раз в четыре года плотность их популяций становится столь высокой, что они начинают мигрировать со своих перенаселенных местообитаний; при этом массово гибнут в фиордах и тонут в реках, что до настоящего времени не имеет достаточного объяснения. Еще с глубокой древности известны циклические нашествия странствующей африканской саранчи на Евразию.

Ряд видов, таких, как енот, в основном имеет достаточно стабильные популяции, однако время от времени их численность резко возрастает (подскакивает) до наивысшего значения, а затем резко падает до некоторого низкого, но относительно стабильного уровня. Эти виды относят к популяциям со скачкообразным ростом численности (кривая 3).

Внезапное увеличение численности происходит при временном повышении емкости среды для данной популяции и может быть связано с улучшением климатических условий (факторов) и питания или резким уменьшением численности хищников (включая охотников). После превышения новой, более высокой емкости среды в популяции возрастает смертность и ее размеры резко сокращаются.

На протяжении истории в разных странах не раз наблюдались случаи краха популяций человека, например в Ирландии в 1845 г., когда в результате заражения грибком погиб весь урожай картофеля. Поскольку рацион питания ирландцев сильно зависел от картофеля, к 1900 г. половина восьмимиллионного населения Ирландии умерла от голода или эмигрировала в другие страны.

Тем не менее численность человечества на Земле в целом и во многих регионах в частности продолжает расти. Люди путем технологических, социальных и культурных перемен неоднократно увеличивали для себя поддерживающую емкость планеты (рис. 2.24). По сути, они смогли изменить свою экологическую нишу за счет увеличения производства продуктов питания, борьбы с болезнями и использования больших количеств энергетических и материальных ресурсов, чтобы сделать обычно непригодные для жизни районы Земли обитаемыми.

В правой части рис. 2.24 приведены возможные сценарии дальнейшего изменения фактической численности людей на планете в случае превышения поддерживающей емкости биосферы.


Рис. 2.24. Увеличение поддерживающей емкости среды для популяции человека (по Т. Миллеру) 1

Когда популяция прекращает расти, ее плотность обнаруживает тенденцию к флуктуациям относительно верхнего асимптотического уровня роста. Такие флуктуации могут возникать либо в результате изменений физической среды, вследствие чего повышается или снижается верхний предел численности, либо по причине внутрипопуляци- онных взаимодействий, либо, наконец, в результате взаимодействия с соседними популяциями. После того как верхний предел численности популяции (К) окажется достигнутым, плотность может некоторое время оставаться на этом уровне или сразу резко упасть (рис. 8.7, кривая 1 ). Это падение окажется еще резче, если сопротивление среды увеличивается не постепенно, по мере роста популяции, а проявляется внезапно (рис. 8.7, кривая 2). В таком случае популяция будет реализовывать биотический потенциал.

Рис.

Однако экспоненциальный рост не может происходить долго. Когда экспонента достигает «парадоксальной точки» стремления к бесконечности, как правило, происходит качественный скачок - быстрое увеличение численности сменяется массовой гибелью особей. Пример подобных флуктуаций - вспышка размножения насекомых, сменяемая массовой их гибелью, а также размножение и отмирание клеток водорослей (цветение водоемов).

Возможна и такая ситуация, при которой численность популяции перескакивает через предельный уровень (рис. 8.7, кривые 3 , 4). Подобное, в частности, наблюдается при вселении животных туда, где их раньше не было (например, зарыбление новых прудов). В этом случае питательные вещества и другие необходимые для развития факторы накоплены еще до начала роста популяции, а механизмы регуляции численности еще не действуют.

Существует два основных типа колебаний численности популяций (рис. 8.8).

Рис. 8.8.

При первом типе периодические нарушения среды, такие как пожары, наводнения, ураганы и засухи, часто приводят к катастрофической, не зависящей от плотности, смертности. Так, численность популяции однолетних растений и насекомых обычно быстро растет весной и летом, а с наступлением холодной погоды резко сокращается. Популяции, рост которых дает регулярные или случайные всплески, называются оппортунистическими (рис. 8.8, график /). Другие популяции, так называемые равновесные (свойственные многим позвоночным), обычно находятся в состоянии, близком к равновесию с ресурсами, а значения их плотности гораздо более устойчивы (рис. 8.8, график 2).

Два выделенных типа популяций представляют собой только крайние точки континуума, однако при сравнении разных популяций подобное разделение часто оказывается полезным. Значение противопоставления оппортунистических популяций равновесным заключается в том, что действующие на них, зависящие и не зависящие от плотности факторы, так же как совершающиеся при этом события, по-разному влияют на естественный отбор и на сами популяции. Р. Мак-Артур и Э. Уилсон (1967) назвали эти противоположные типы отбора r-отбором и К-отбором в соответствии с двумя параметрами логистического уравнения. Некоторые характерные признаки г-отбора и /Г-отбора приведены в табл. 8.1.

Конечно, мир не окрашен только в черное и белое. Ни один из видов не подвержен только r-отбору или только АГ-отбору; каждый должен достигнуть определенного компромисса между этими двумя крайними вариантами. В самом деле, о каждом конкретном организме можно говорить как о «r-стратеге» или «/^-стратеге» только при сравнении с другими организмами, и поэтому все утверждения о двух выделенных типах отбора носят относительный характер. Однако нельзя

Основные признаки / -отбора и А"-отбора

Таблица 8.1

Параметр популяции, направление действия отбора

Размеры особей

Продолжительность

Короткая, обычно менее года

Долгая, обычно более года

Смертность

Обычно катастрофическая, ненаправленная, не зависящая от плотности

Более направленная, зависящая от плотности

Кривая выживания

Обычно третьего типа

Обычно первого и второго типов

Размер популяций

Изменчивый во времени, не равновесный, ниже предельной емкости среды; экологический вакуум; ежегодное заселение

Более постоянный во времени, равновесный, близкий к предельной емкости среды; повторные заселения не являются необходимыми

Конкуренция

Изменчивая, часто слабая

Обычно острая

Отбор благоприятствует

Быстрому развитию, высокой скорости увеличения популяции, раннему размножению, единственному в течение жизни акту размножения, большому числу мелких потомков

Более медленному развитию, большой конкурентоспособности, более позднему размножению, повторяющимся в течение жизни актам размножения, меньшему числу более крупных потомков

отрицать, что существуют две противоположные стратегии размножения, к которым популяции прибегают в зависимости от колебаний емкости среды. На рисунке 8.9 показано, как в эволюции мог закрепиться механизм т-отбора или А"-отбора: в А"-селективных средах отбор способствует становлению механизмов, компенсирующих колебания среды, а в /*-селективных средах популяция «совершенствуется» в способности быстро заселять среду в благоприятное время года.

Во временном отношении колебания численности популяции бывают непериодическими и периодическими. Последние можно разделить на колебания с периодом в несколько лет и сезонные колебания. Непериодические флуктуации носят непредвиденный характер.


Рис. 8.9.

В Тихом океане, особенно в районе Большого барьерного рифа к северо-востоку от Австралии, с 1966 г. наблюдается увеличение численности морской звезды терновый венец (Acanthaster planci). Данный вид, будучи ранее малочисленным (менее одной особи на 1 м 2), достиг к началу 1970-х гг. плотности 1 особь на 1 м 2 . Морская звезда наносит большой вред коралловым рифам, так как питается полипами, составляющими их живую часть. Она «очистила» 40-киломе- тровую полосу рифов у острова Гуам менее чем за три года. Ни одна из гипотез, предложенных для объяснения внезапного увеличения численности морской звезды (исчезновение одного из ее врагов - брюхоногого моллюска тритоний рог (Charonia triton is), которого добывают из-за раковин, содержащих перламутр; увеличение содержания в морской воде ДДТ и в связи с этим нарушение естественного равновесия; влияние радиоактивных осадков), не может считаться удовлетворительной.

Пример периодических колебаний численности с периодом в несколько лет дают популяции некоторых арктических млекопитающих и птиц. У зайца-беляка и рыси период колебаний численности равен 9,6 года (рис. 8.10).

Как видно из рисунка, максимум численности зайца по сравнению с численностью рыси обычно сдвинут на один-два года назад. Это вполне понятно: рысь питается зайцами, а потому колебания ее численности должны быть связаны с колебанием численности ее добычи.


Рис. 8.10. Периодические колебания популяций зайца-беляка (график 1) и рыси (график 2), установленные по числу шкурок, заготовленных «Компанией Гудзонова пролива»

Циклические изменения численности со средним периодом в четыре года характерны для обитателей тундры: полярной совы, песца, а также лемминга. По мнению многих ученых, периодичность 9,6-лет- них циклов у зайца-беляка и рыси определяется явлениями, происходящими в космосе, и так или иначе связана с солнечными циклами. Подобная зависимость отмечается, например, у атлантического канадского лосося, максимум численности которого наблюдается через каждые 9- 10 лет.

Причины, вызывающие другие периодические флуктуации численности, хорошо известны. У берегов Перу наблюдается трансгрессия теплых вод к югу, известная под названием El Nino. Приблизительно раз в семь лет теплые воды вытесняют с поверхности холодные. Температура воды быстро поднимается на 5 °С, изменяется соленость, гибнет планктон, насыщая воду продуктами распада. В результате погибает рыба, а за ней морские птицы.

Случаи сезонных изменений численности популяций хорошо известны всем. Тучи комаров, большое количество населяющих леса птиц обычно наблюдаются в определенный период года. В другие сезоны популяции этих видов могут практически исчезать.

Изучение и вскрытие причин, определяющих колебания численности животных в природе, является одной из важнейших задач современной зоологии. Эти изменения определяют динамику биомассы вида, а следовательно, и степени участия вида в работе биогеоценозов. Первично количественные изменения числа особей в популяциях представляют собой итог воздействия, факторов биотического и абиотического характера. При этом надо различать истинные изменения численности и временные, которые могут быть вызваны миграциями животных из данных, биотопов в связи с неблагоприятными условиями (засуха, наводнение) или различием периодов активности разных возрастных и половых групп. Наблюдения показывают, что как биотические, так и абиотические факторы оказывают особенно массированное воздействие на численность наземных позвоночных, если они связаны с антропогенным воздействием.

Периодические колебания численности

Периодические колебания численности населения ящериц в основном связаны с размножением и возрастной смертностью, т. е. являются сезонными. В ряде случаев количественные флуктуации численности в популяциях могут быть вызваны периодичностью вспышек кормовых видов и периодических изменений "давления" хищников.

Известно, что всякая популяция имеет свою специфическую ритмику численности (как по полу, так и по возрасту). К сожалению, имеются лишь отрывочные данные по ритмике численности особей разного пола прыткой ящерицы по сезонам. В. К. Жаркова (1973а) исходя из факта, что количественные соотношения разных возрастных групп в популяции иные, на основе имеющегося у нее материала определяет различие в возрастной смертности самцов и самок (табл. 57).

Как видно из табл. 57, за первый и второй годы жизни среди ящериц Мещерской низменности самцов погибает почти в два раза больше, чем самок. Лишь на третьем году жизни резко увеличивается процент гибели самок. Такой ход динамики численности приводит к преобладанию в популяции молодых самок. В более старших возрастных группах, наоборот, происходит интенсивная смертность самой, и соотношение полов выравнивается. Возможно, именно такая дифференцированная смертность объясняет несколько большую численность самок в некоторых природных популяциях.

Ритмика колебаний численности особей разного пола подчиняется тем же общим закономерностям, которые действуют при возрастных колебаниях, с некоторыми поправками для разных полов. В настоящее время можно построить модель динамики численности населения прыткой ящерицы, определяемую возрастной смертностью (рис. 92). Как показано в гл. XV, темп смертности животных на протяжении их жизни оказывается различным. Проследим динамику численности одного поколения. Принимая данные табл. 62 (гл. XV) за исходные, получаем, что наибольшая численность в популяции достигается в момент откладки яиц (отложенное оплодотворенное яйцо - это уже особь) и выхода молодых. Учитывая большую смертность среди новорожденных (50%), которые гибнут до зимовки и после нее, к следующей весне в живых останется всего 25% от родившихся этого поколения. На второй год погибнет около 33% от достигших возраста в один год. На третий год жизни смертность, видимо, несколько снижается, но на четвертом и пятом годах жизни достигает соответственно 50 и 100% от числа доживших до этого возраста особей.

Таблица 57

Возрастная смертность самцов и самок (разница в числе особей предыдущей и последующей генерации *) прыткой ящерицы в Мещерской низменности [по В. К. Жарковой (1973а) за 1965 - 1969 гг.]

* (Под генерацией в данном случае имеется в виду потомство, появившееся на свет в один сезон размножения. )

Суммарная картина сезонных колебаний численности в популяции прыткой ящерицы будет намного сложнее, так как в каждый момент времени в популяции будут находиться особи пяти поколений, каждое из которых имеет свой темп смертности. В результате модель численности популяции прыткой ящерицы будет выглядеть следующим образом (рис. 93). Необходимо подчеркнуть, что в этой модели учтены только сезонная циклика; на нее в природе практически всегда накладывается апериодическая цикличность.

Таблица 58

Динамика плотности населения (экз./1000 м 2) прыткой ящерицы за 4 года в разных биотопах (Жаркова, 1973б)

Безусловно, что в разных частях ареала динамика изменений сезонной численности популяции должна быть различной. Многолетняя динамика численности представляет собой итог сезонных динамик. Но это не простая сумма, а как бы наложение друг на друга различных часто противоположно направленных явлений, обусловленных различными факторами. Говоря о сочетании факторов, имеются в виду как биотические, так и абиотические факторы, действующие на природные популяции. Проиллюстрируем колебания численности в разные годы на примере пяти групп ящериц в северной лесостепи Европейской части СССР (табл. 58).

Как видно, каждому биотопу присуща определенная динамика колебаний численности. Так, на склонах реки численность ящериц за эти четыре года постоянно увеличивается, в то (время как в сосновых посадках ящерица отсутствует, затем резкий "всплеск" численности с последующим сокращением численности населения. В смешанном лесу, на разнотравном лугу происходят изменения численности другого порядка.

Несомненно, колебания численности в популяциях прыткой ящерицы, связанные с действием биотических факторов, могут быть вызваны либо периодическими вспышками численности основных кормов (см. гл. VI), либо периодичностью давления пресса хищников, либо, наконец, резкими вспышками численности конкурирующих видов.

Увеличение численности кормовых видов, безусловно, приводит к некоторому увеличению численности популяции (при условии отсутствия пресса хищников и конкурирующих видов), падение же численности пищевых видов в некоторых случаях приводит к тому, что взрослые особи начинают пожирать молодых (каннибализм), тем самым сокращая численность популяции. В некоторых случаях происходит ложное сокращение численности популяции в результате миграции. Такие миграции могут быть вызваны увеличением численности популяций конкурирующих видов или резким спадом численности кормовых видов. Иногда популяции мигрируют полностью и переходят в биотопы, совершенно ей не свойственные, в стадии переживания (см. гл. IX). Важно добавить, что кормовые виды и виды-конкуренты, видимо, не имеют столь же существенного значения в регуляции численного состава популяций прыткой ящерицы (Лукина, 1966; Тертышников, 1972а, б; и др.)

Немаловажную роль в колебаниях численности популяций играют хищники. Резкое увеличение или падение численности хищников неизбежно приводит к сокращениям или увеличениям численности популяций прыткой ящерицы. В то же время значение хищников как регуляторов численности популяций прыткой ящерицы крайне недостаточно изучено. По расчетам М. Ф. Тертышникова, в Ставропольском крае, на стационарном участке, расположенном в верховьях р. Томузловки, за сезон гибнет 37,2% общей биомассы популяции ящерицы в результате воздействия на них учтенных фоновых врагов из позвоночных. В этом районе пресс хищников является дополнительной причиной, задерживающей рост численности в популяции. "Давление" хищников, несомненно, различно и в разных популяциях. Об этом косвенно свидетельствуют данные в гл. XIII о различной доле особей с регенерированными хвостами (т. е. особей, подвергавшихся нападению хищников и удачно их избежавших). Напомним лишь, что в некоторых популяциях больше половины взрослых особей несут на себе следы таких нападений.

В целом можно сказать, что периодические колебания, видимо, не вызывают изменений численности популяций прыткой ящерицы более чем на один порядок.

Апериодические колебания численности

Факторы, способствующие массовому размножению ящериц популяции, и факторы, определяющие наступление следующего за ним периода депрессии численности, могут быть вызваны апериодическими явлениями. Такими явлениями могут быть катастрофические изменения биогеоценозов в результате пожаров, наводнений, засухи, сильных морозов в малоснежные зимы и прочие явления, прямо или косвенно благоприятствующие или, наоборот, препятствующие росту численности. Колебания численности могут быть связаны и с длительными изменениями природных условий, вызванными деятельностью человека (опустынивание, засоление больших территорий и т. п., или длительными изменениями климата типа ледниковых периодов. Иногда такого рода причины могут приводить к массовой гибели животных, тем более что прыткая ящерица, являясь пойкилотермным животным, весьма зависит от климатических условий.

По мнению многих авторов (Терентьев, 1946; Лукина, 1966б; Гаранин, 1971, Тертышников, 1972б; Жаркова, 1973а; и др.), основное сокращение численности ящериц происходит в основном за счет гибели яиц. Если принять все отложенные яйца в популяции за 100%, то к моменту выхода молодых гибнет от 40 до 60%. Этот процент резко увеличивается особенно в дождливое и холодное лето (Гаранин, 1971). Другой критический момент, связанный с физическими факторами среды, в жизни прыткой ящерицы - осень с ранними заморозками. Именно в этот период времени, когда животные собираются уходить на зимнюю спячку, такого рода явления наиболее опасны (особенно для молодых этого года рождения, которые позднее уходят на зимовку).

Наконец, последним критическим моментом, влияющим на численность популяций, является зимовка. Численность особенно резко падает в морозные малоснежные зимы (Гаранин, 1971; Тертышников, 1972б). Обычно взрослые ящерицы зимуют в своих норах или в старых норах грызунов (см. гл. V). Если в открытых биотопах норы большинства грызунов глубокие и как зимние убежища являются надежными (так как температура в них не опускается ниже 0°), то этого нельзя обычно сказать о норах, вырытых самими ящерицами, обычно неглубоких, а также о трещинах и щелях, где часто в почве зимуют молодые особи. В малоснежные холодные зимы, когда почва недостаточно покрыта снегом, а следовательно нарушается температурный режим в зимних норах, многие животные, зимующие в таких норах, погибают. Поэтому значительно более надежными для выживаемости ящериц зимой являются лесные биотопы, лесополосы, придорожные канавы, овраги и т. п., так как именно в этих местах скапливается значительное количество снега, утепляющего почву. Здесь массовая гибель животных в морозные зимы может наступить лишь в исключительных случаях. В. И. Гаранин (1971) приводит такой пример. Малоснежная суровая зима 1968 г. в Волжко-Камском заповеднике привела к резкому сокращению численности ящериц. Именно во время зимовки происходит резкое сокращение численности среди молодых животных в популяции. Так, М. Ф. Тертышников показал, что отход яиц и смертность сеголетков в первую зимовку в Ставропольской возвышенности составляет 25,7%.

Наиболее существенные изменения среды обитания, носящие катастрофический характер, приводят к резкому снижению ее численности. К типичным явлениям такого порядка можно отнести пожары, наводнения и засухи. По сведениям В. К. Жарковой (1973а), в 1967 г. после сильных дождей в районе Окского заповедника реки вышли из берегов и затопили биотопы, занимаемые прыткой ящерицей. Так, в пойменном лугу и в пойменных посадках сосны на р. Выше в этот год наблюдалось резкое сокращение численности прыткой ящерицы: на пойменном лугу численность ящериц в среднем сократилась в 4 раза по сравнению с 1966 г., а в пойменных посадках в 2,5 раза. Надо заметить, что при этом могут совершенно исчезнуть отдельные демы или целые их группы. Но популяции в большинстве случаев сохраняются, хотя и могут при этом достигать минимальных численностей, достаточных все же для дальнейшего существования.

Наиболее существенные изменения среды, связанные с длительным изменением природных условий, в настоящее время чаще бывают связаны с антропогенными воздействиями. Например, одной из причин гибели прытких ящериц является создание новых водохранилищ на пойменных землях. На берегах Куйбышевского водохранилища Гаранин (1971) отмечает резкое сокращение численности рептилий и в том числе прыткой ящерицы. В то же время на некоторых островах водохранилища сократившиеся сначала численно популяции затем заметно увеличились.

Более серьезным и распространенным фактором, отрицательно влияющим на численность ящериц, является неумеренное использование ядохимикатов в сельском и лесном хозяйстве. Существует строгая корреляция между обработкой ядохимикатами участков Мещеры и населенностью их ящерицами (Жаркова, 1973б). В этом районе не заселенные прыткой ящерицей, но подходящие для них биотопы составляют от 32 до 49% обследованной территории. Есть все основания согласиться с предостережением Е. Рене (Rene, 1969) и К. Корбетта (Corbett, 1969) об опасности вымирания прыткой ящерицы в развитых промышленных районах в связи с полным антропогенным разрушением естественных биотопов.

Есть и другая сторона антропогенного влияния на численность прыткой ящерицы. Наблюдения, проведенные в 1970 - 1974 гг. в разных частях ареала прыткой ящерицы, показывают, что она в некоторых районах становится "антропогенным видом". Широкая способность этого вида приспосабливаться к антропогенным биотопам (см. табл. 5) несомненно позволит этому виду не только "не сокращать свою численность при контактах с цивилизацией, но, возможно, в некоторых частях своего ареала даже увеличивать ее. Пока же в результате активного антропогенного воздействия численность прытких ящериц резко сокращается на Ставропольской возвышенности (Тертышников, 1972в), в Калужской обл. (Стрельцов), во многих районах Сибири (Баранов и др., сообщ.), Латвийской (Бахарев, 1971) и Эстонской ССР (Вельдре, личное сообщ.), а в окрестностях г. Махачкала (Хонякина, Кутузова, личн. сообщ.) прыткая ящерица исчезла вообще.

Таким образом, в настоящее время лишь при очень резких изменениях среды, обычно, связанных с разрушением биоценозов под воздействием человека, численность популяций сокращается ниже критического уровня, за которым следует вымирание популяции.

Периодические (сезонные и годовые) колебания численности прыткой ящерицы, видимо, не превышают одного порядка величин, тогда как апериодические колебания оказываются часто более значительными.

По достижении заключительной фазы роста размеры популяции продолжают колебаться от поколения к поколению вокруг некоторой более или менее постоянной величины. При этом численность одних видов изменяется нерегулярно с большой амплитудой колебаний (насекомые-вредители, сорняки), колебания численности других (например, мелких млекопитающих) имеют относительно постоянный период, а в популяциях третьих видов численность колеблется от года к году незначительно (долгоживущие крупные позвоночные и древесные растения).

В природе в основном встречаются три вида кривых изменения численности популяции: относительно стабильный, скачкообразный и циклический (рис. 6.9).

Рис. 6.9. Основные кривые изменения численности популяций различных видов:

1 - стабильный; 2 - цикличный; 3 - скачкообразный

Виды, у которых численность из года в год находится на уровне поддерживающей емкости среды, имеют достаточно стабильные популяции (кривая 1 ). Такое постоянство характерно для многих видов дикой природы и встречается, например, в нетронутых тропических влажных лесах, где среднегодовое количество осадков и температура изменяются день ото дня и из года в год крайне мало.

У других видов колебания численности популяций носят правильный циклический характер (кривая 2 ). Хорошо знакомы примеры сезонных колебаний численности. Тучи комаров; поля, заросшие цветами; леса, полные птиц, - все это характерно для теплого времени года в средней полосе и сходит практически на нет зимой.

Широко известен пример циклических колебаний численности леммингов (северных травоядных мышевидных грызунов) в Северной Америке и Скандинавии. Раз в четыре года плотность их популяций становится столь высокой, что они начинают мигрировать со своих перенаселенных местообитаний. При этом массово гибнут в фиордах и тонут в реках, что до настоящего времени не имеет достаточного объяснения. Еще с глубокой древности известны циклические нашествия странствующей африканской саранчи на Евразию.

Ряд таких видов, как енот, в основном имеют достаточно стабильные популяции, однако время от времени их численность резко возрастает (подскакивает) до наивысшего значения, а затем резко падает до некоторого низкого, но относительно стабильного уровня. Эти виды относят к популяциям со скачкообразным ростом численности (кривая 3 ).

Внезапное увеличение численности происходит при временном повышении емкости среды для данной популяции и может быть связано с улучшением климатических условий (факторов) и питания или резким уменьшением численности хищников (включая охотников). После превышения новой, более высокой емкости среды в популяции возрастает смертность и ее размеры резко сокращаются.



Рис. 6.10. Увеличение поддерживающей емкости среды для популяции человека (по Т. Миллеру), масштаб по осям условный

На протяжении истории в разных странах не раз наблюдались случаи краха популяций человека, например в Ирландии в 1845г., когда в результате заражения грибком погиб весь урожай картофеля. Поскольку рацион питания ирландцев сильно зависел от картофеля, к 1900 г. половина восьмимиллионного населения Ирландии умерла от голода или эмигрировала в другие страны.

Тем не менее численность человечества на Земле, в целом, и во многих регионах в частности, продолжает расти. Люди путем технологических, социальных и культурных перемен неоднократно увеличивали для себя поддерживающую емкость планеты (рис. 6.10). По сути, они смогли изменить свою экологическую нишу за счет увеличения производства продуктов питания, борьбы с болезнями и использования больших количеств энергетических и материальных ресурсов, чтобы сделать обычно непригодные для жизни районы Земли обитаемыми.

В правой части рис. 6.10 приведены возможные сценарии дальнейшего изменения фактической численности людей на планете в случае превышения поддерживающей емкости биосферы.

Стабильная популяция характеризуется примерным постоянством численности в течение некоторого промежутка времени и формируется при одинаковой интенсивности рождаемости и смертности. Однако, в отдельные моменты этого промежутка времени численность популяции может отклоняться от среднего значения. В этом случае внешние условия относительно стабильны и состояние самой популяции тоже примерно стабильно.

В растущей популяции рождаемость превышает смертность, поэтому численность возрастает вплоть до такого значения, что может наступить вспышка массового размножения. При резком увеличении популяции возникает ее переуплотнение, условия существования ухудшаются, смертность увеличивается, численность популяции начинает сокращаться.

Если смертность превышает рождаемость, то популяция — сокращающаяся.

Плотность популяции — число особей, приходящихся на единицу площади или объема. Изменение плотности популяции позволяет сделать вывод о соотношении рождаемости и смертности, но только в тех условиях, если ареал популяции остается неизменным и не происходит ни эмиграции, ни иммиграции особей. Если в качестве критерия изменения численности популяции использовать чистую скорость размножения r 0 , равную среднему числу потомков, производимых данной особью вида за всю жизнь, то при:

  • r > 1 — популяция растущая
  • r = 1 — популяция стабильная
  • r < 1 — популяция сокращающаяся

Колебания численности особей любой популяции называются волнами жизни или популяционными волнами. Могут быть сезонными (периодическими), то есть обусловленными генетически, а также несезонными (апериодическими), то есть обусловленными непосредственным воздействием на популяцию биотических и абиотических факторов.

Длина волны жизни прямо пропорциональна продолжительности цикла развития организма.

Численность популяции зависит от множества факторов, которые можно условно разделить на 2 группы:

  1. Отвечает случаю, когда скорость роста популяции уменьшается с увеличением ее численности. Это характерно для большинства популяций растений и животных и проявляется двумя способами:
    — при увеличении плотности популяции — снижение плодовитости;
    — при увеличении плотности популяции изменяется возраст наступления половой зрелости.
  2. Соответствует максимальному темпу роста популяции при средних, а не при низких значениях плотности. Однако, достигнув максимального значения, скорость роста популяции начинает уменьшаться при дальнейшем увеличении плотности популяции. Характерно для некоторых птиц, насекомых, видов, для которых характерен эффект группы.
  3. Наблюдается тогда, когда темпы роста популяции примерно постоянны при высоких значениях плотности. После достижения предельного значения плотности популяции, темп роста сильно падает. Характерно для видов с сильными колебаниями численности (мышевидные грызуны, насекомые).


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта