Главная » Культура » Суперсила. Поиски единой теории природы. Происхождение и эволюция Вселенной: теория Большого взрыва Когда произошли большой взрыв образование первых галактик

Суперсила. Поиски единой теории природы. Происхождение и эволюция Вселенной: теория Большого взрыва Когда произошли большой взрыв образование первых галактик

Наша Галактика – Млечный Путь – принадлежит к так называемым Галактикам спирального типа (S – Галактики), представляющие собой вращающийся диск из водородного газа, пыли и звёзд с ярко выраженными спиральными рукавами (рис. 1.6). Это – сложный астрономический объект, состоящий из ядра, - утолщения в центральной части – балджа (от английского слова “buldge”), гало и собственно самого диска (рис. 1.7). В плотном ядре в центре диска находятся, в основном, старые звёзды и в нём нет газа и пыли. В сердце нашей Галактики находится чёрная дыра (О черных дырах прекрасно рассказано в книге А.М. Черепащука “Черные дыры”).
Недавно орбитальная рентгеновская обсерватория Chandrа зафиксировала мощную рентгеновскую вспышку в центре Галактики, что позволило определить размер чёрной дыры – не более расстояния от Земли до Солнца.
Диск Галактики заполнен газом, пылью и, в основном, молодыми звёздами. Поперечник диска имеет размер около 30000 парсек (Пк), балджа – 8000 Пк. В спиральных рукавах диска сосредоточены почти все звёзды и – большая часть газово-пылевой материи.
Диск окружен сферическим гало. Его размер на порядок превышает поперечный размер диска. В гало находятся редкие звёзды и скопления звёзд – кластеры, насчитывающие многие сотни тысяч звёзд. Кроме этого, в Гало есть тёмная материя (“dark matter”), которая была идентифицирована по гравитационным эффектам. Тёмная материя увеличивает массу Галактики, по крайней мере, в несколько раз.
Солнце – ближайшая к нам звезда – находится в спирали Ориона на расстоянии ~25000 Пк от центра нашей галактики. Солнце – относительно молодая звезда – ему 5 миллиардов лет. Млечный путь, по крайней мере, вдвое старше, чем Солнце: возраст звёздных кластеров может насчитывать 10 миллиардов лет.
Общее число звёзд в диске Галактике – 10 11 (сто миллиардов). Помимо звёзд Галактика включает и межзвёздную среду. Основным компонентом межзвёздной среды является межзвёздный газ, состоящий в основном (~90%) из водорода и межзвёздной пыли (~1%). В составе межзвёздной среды магнитные поля, электромагнитные излучения. Галактика вращается дифференциально: на периферии скорость её вращения меньше, чем в центральных областях. Период обращения нашей Солнечной системы вокруг центра Галактики составляет приблизительно 200 миллионов лет. Запомним эту цифру. Мы ещё к ней вернемся.
Средняя плотность межзвёздного вещества в диске оценивается как 10 -24 г/см 3 (грубо – 1 атом водорода на см 3). Существуют большие отклонения от этой величины: это – плотные облака, протяжённостью до десятков парсек с плотностями от 100 до 1000 атомов/см 3 .
Вещество, находящееся в Галактике в атомарном состоянии под действием ультрафиолетового излучения звёзд ионизируется (нейтральные атомы “теряют” свои электронные оболочки). Так, например, до 90% водорода составляют его ионы – протоны.
Масса всей Вселенной, а это – оптически яркие звёзды, межзвёздная пыль и газ, молекулярные облака, планеты, сосредоточена в протонах и нейтронах (85% приходится на протоны, а 15% на нейтроны). Нейтроны, будучи нестабильной частицей, существуют только внутри ядер. Всё это составляет так называемую барионную материю.

Обратимся теперь к проблеме о количественных соотношениях между различными формами материи в современной Вселенной. На рис. 1.8 дан ответ на этот вопрос. Ответ согласно уровню наших знаний на сегодня. Из диаграммы, приведённой на рис. 1.8, видно, что лишь несколько процентов (около 4 %) состава Вселенной относится к тому, из чего, как мы полагаем, образован наш мир. Это – барионная материя. Всё остальное, а это практически 96% - тёмная материя и тёмная энергия – пока малопонятные для нас материальные субстанции Вселенной. Мы знаем, что они определённо существуют. Но мы не знаем, что это такое. Мы только строим гипотезы и пытаемся поставить эксперименты, в надежде доказать их справедливость. Но факт остаётся – у нас пока нет аргументов в пользу окончательного выбора гипотезы, объясняющей состав тёмного вещества и тёмной энергии во Вселенной.
Тёмная энергия, согласно современным воззрениям, - это как раз та сила, которая заставляет Вселенную расширяться. Если привычная нам гравитация заставляет тела притягиваться друг к другу, то тёмная энергия – скорее антигравитация, способствующая разлёту тел во Вселенной. По-видимому, сразу после Большого взрыва расширение Вселенной происходило с замедлением, но после этого “тёмная энергия” преодолела гравитацию и вновь началось ускорение – расширение Вселенной. Это - не гипотеза, a экспериментальный факт, обнаруженный из излучения красного смещения - уменьшения яркости далёких сверхновых звёзд: они ярче, чем им следовало бы быть из картины замедления расширения Вселенной. Эффект “красного смещения” – регистрируемое наблюдателем увеличение длины волны спектра наблюдаемого источника (именно поэтому звезды кажутся ярче) – одно из замечательных экспериментальных астрономических фактов. Космологическое “красное смещение” наблюдаемых галактик было предсказано А. Эйнштейном и является по сей день одним из убедительных доказательств расширяющейся Вселенной.
Окунаясь в эпоху ранней космологии, можно вспомнить, что именно великий А.Эйнштейн, стараясь сохранить статичность Вселенной, ввёл, ставшей исторической, космологическую константу - уравновешивающую силы притяжения небесных тел. Но вслед за открытием “красного смещения” он вычеркнул константу из своих уравнений. Видимо, А. Эйнштейн был неправ, отказавшись от неё: Ведь – это есть та тёмная энергия, которая интригует современных астрофизиков.
Не ясно, повезло или нет человечеству, но оно живёт в период развития Вселенной, когда тёмная энергия преобладает, способствуя расширению. Но этот процесс, вероятно, не вечен и через временной отрезок, сопоставимый с возрастом Вселенной (10-20 миллиардов лет) история может повернуть вспять – наш мир начнёт сжиматься. Наступит или нет момент Большого Схлопывания – альтернативы Большого взрыва, безусловно, большой вопрос современной космологии.
Учёные сумели доказать существование расширяющейся Вселенной – это красное смещение оптического излучения Галактики и реликтовое электромагнитное излучение – реликтовые фотоны, о которые пойдёт речь ниже. Возможно, учёным удастся в будущем установить и существование “предвестников” надвигающегося сжатия Вселенной.
Другой экспериментальный факт – изучение отклонения света от далёких галактик в гравитационных полях Вселенной привёл астрофизиков к выводу о существовании скрытой – тёмной материи – где-то вблизи нас. Именно эта тёмная материя изменяет траектории световых лучей на большую величину, чем это следовало ожидать в присутствии лишь видимых близлежащих галактик. Учёные изучили распределение на звёздном небе более 50000 галактик в попытке построить пространственную модель структуры тёмной материи. Все полученные результаты неумолимо свидетельствуют в пользу её существования, причём Вселенная – это в основном и есть тёмная материя. Современные оценки говорят о величине около 80%. Здесь мы вновь повторим – нам неизвестно, из каких частиц состоит эта тёмная материи. Учёные лишь предполагают, что она состоит из двух частей: пока неизвестных каких-то экзотических массивных частиц и физического вакуума .
Мы ещё вернёмся к этой проблеме, а пока обратимся вновь к привычной для нас формы вещества, соcтоящей из барионов (протонов и нейтронов) и электронов – “барионной материи”. О ней мы знаем гораздо больше. Более чем за столетний период истории развития физики – от открытия элементарных частиц и строения атома до результатов исследований в этой области, а также в астрофизике, наука получила в своё распоряжение множество новых результатов о строении привычного нам вещества.



А БЫЛ ЛИ БОЛЬШОЙ ВЗРЫВ?

В наше время существуют две основных «научных» теории возникновения нашей Вселенной. Согласно Теории стабильного состояния, материя/энергия, пространство и время существовали всегда. Но тут же возникает логичный вопрос - почему сейчас никому не удается создать материю и энергию? Это утверждает Первый Закон Термодинамики, ни одного исключения из которого не удалось обнаружить. Напротив, все стремится к распаду и разрушению, энергия иссякает, становясь все менее способной к совершению работы (это называют Вторым Законом Термодинамики). Бесконечно старая Вселенная должна быть полностью лишена полезной энергии и каких-либо изменений - достигнуть состояния, называемого тепловой смертью.

Самая популярная теория происхождения Вселенной, поддерживаемая большинством теоретиков - Теория Большого Взрыва. Подобно библейскому повествованию о Сотворении она утверждает, что Вселенная возникла внезапно, но это было случайное событие, случившееся миллиарды лет назад. Оценка возраста Вселенной последнее время колебалась в пределах 8-20 миллиардов лет; в настоящее время речь ведется о 12 миллиардах лет.

Теорию Большого Взрыва предложили в 20-х годах нашего века ученые Фридман и Леметр, в сороковых годах ее дополнил и переработал Гамов. Согласно этой теории, когда-то давным-давно наша Вселенная представляла собой бесконечно малый сгусток, сверхплотный и раскаленный до немыслимых температур. Это нестабильное образование внезапно взорвалось, пространство быстро расширилось, а температура разлетающихся частиц, обладающих высокой энергией, начала снижаться. Примерно после первого миллиона лет атомы двух самых легких элементов, водорода и гелия, стали стабильными. Под действием сил притяжения начали концентрироваться облака материи. В результате сформировались галактики, звезды и другие небесные тела. Звезды старели, взрывались сверхновые, после чего появлялись более тяжелые элементы. Они формировали звезды более позднего поколения, такие, как наше Солнце. В качестве доказательств того, что в свое время произошел Большой Взрыв, говорят о красном смещении света от объектов, расположенных на больших расстояниях, и микроволновом фоновом излучении.

Красное смещение

Наблюдаемый спектр элементов, находящихся от нас на очень большом расстоянии, в общем таков же, как и на Земле, но спектральные линии сдвинуты в низкочастотную область - к большей длине волны. Это явление называют красным смещением. Его пытаются объяснить тем, что Земля и объект разлетаются с большой скоростью в разные стороны. Следуя этой теории, если проследить этот процесс в прошлое, все должно было начаться из одной точки - Большого Взрыва.

Вполне возможно, что красное смещение в спектре дальних галактик происходит из-за того, что они удаляются от нас. Библия говорит о том, что Господь распростер небеса. Действие этого движения противоположно действию сил притяжения, что стабилизирует всю систему. Однако если небеса были созданы с этой «встроенной» кинетической энергией только несколько тысяч лет тому назад, то при попытке заглянуть в более древнее время мы можем прийти к ложным заключениям. Положение, сложившееся в обозримой Вселенной к нашему времени может дать нам некоторое понимание того, что происходило в прошлом, но утверждать что-либо с полной уверенностью мы не можем.

Еще одно возможное объяснение красного смещения - гравитационное притяжение света, исходящего от галактики или звезды. Крайним случаем этого эффекта может быть черная дыра, в которой свет вовсе не может преодолеть гравитационное притяжение (В соответствии с теорией, черные дыры возникли в результате гравитационного свертывания (коллапса) старых, истощенных звезд-гигантов. Из-за особенностей строения и функционирования черных дыр обнаружить их чрезвычайно трудно. К нынешнему дню мы не можем с уверенностью утверждать, обнаружена ли хоть одна из них).

Советские ученые предположили, что красное смещение может происходить из-за снижения со временем скорости света. (Troitskii , Astrophysics and Space Science , 139, (1987) 389). Такой эффект способен породить и фоновое излучение.

Фоновое излучение

Теоретики предположили, что «эхо» первичного Большого Взрыва тоже претерпело красное смещение, и искать его теперь нужно в микроволновом диапазоне спектра. В 1965 году Пенциас и Уилсон (Penzias, Wilson ) обнаружили микроволновое фоновое излучение с температурой всего 3° выше абсолютного нуля. Может ли это быть доказательством большого взрыва?

Фоновое излучение приблизительно в 3°К совершенно одинаково во всех направлениях, т.е. изотропно. Вселенная состоит из огромных пустых пространств и гигантских скоплений галактик. Если излучение свидетельствует о прошлом Вселенной, то оно не должно быть изотропным. Именно из-за этого несоответствия НАСА послала специальный спутник (COBE) с целью более точного измерения фонового излучения. И опять-таки оказалось, что излучение совершенно одинаково во всех направлениях. Однако с помощью многократного компьютерного усиления сигнала астрономы получили наконец долгожданную анизотропию. Разница температур составляла миллионные доли градуса. 1 мая 1992 года в журнале Science была напечатана статья, в которой сказано, что разница температур «находится намного ниже уровня шумов измерительных приборов».

Нечто из ничего

Астроном Дэвид Дарлинг (Darling ) в статье в New Scientist (14 сентября 1996 г., с. 49) предостерегает: «Не позволяйте толкователям космологии одурачить вас. У них тоже нет ответов на вопросы - хотя они хорошенько поработали над тем, чтобы убедить всех, и себя в том числе, в том, что им все ясно... На самом же деле объяснение того, как и откуда все началось - до сих пор серьезная проблема. Не помогает даже обращение к квантовой механике. Либо не существовало ничего, с чего все могло бы начаться - ни квантового вакуума, ни прегеометрической пыли, ни времени, в котором могло происходить что-либо, ни каких бы то ни было физических законов, в соответствии с которыми ничто могло превратиться в нечто. Либо же существовало нечто, и в этом случае оно требует объяснения».

Первый Закон, о котором мы уже говорили, гласит: нельзя получить что-либо из ничего.

Порядок из взрыва? Согласно Второму Закону термодинамики порядок, наблюдаемый в нашей Солнечной системе, не может быть следствием взрыва. Взрыв не ведет к порядку. Для того, чтобы получить некий порядок, необходимо введение не только энергии, но и информации.

Скрытая холодная темная материя

Огромная проблема теории большого взрыва в том, как предполагаемое изначальное излучение высокой энергии, якобы разлетаясь в разные стороны, могло объединиться в такие структуры как звезды, галактики и скопления галактик. Такая теория предполагает наличие дополнительных источников массы, обеспечивающих соответствующие значения силы притяжения. Эта материя, обнаружить которую так и не удалось, была названа Холодной Темной Материей (CDM - Cold Dark Matter). Подсчитали, что для образования галактик необходимо, чтобы такая материя составляла 95-99% Вселенной. Эта материя сродни новому наряду короля из сказки Андерсена - все говорят о нем, но никто его не видел. Какие только источники CDM ни изобретались! М. Хокинс (Hawkins ) в книге Hunting down the Universe (1997) предположил, что 99% всей массы Вселенной составляют мини-черные дыры, каждая размером с двуспальную кровать. Но если эти таинственные черные дырочки образовались в результате свертывания звезд, как предполагает теория, они вряд ли бы могли быть причиной образования звезд - звезды образуются только из звезд. Еще один претендент на потерянный источник притяжения - «извивающиеся полосы волокнистого вещества, простирающиеся в космосе на миллионы километров, а также сверхтяжелые сгустки энергии, имеющие форму кренделя» (New Scientist , 27 сентября 1997 г., с. 30). Имеют ли красные карлики какое-то отношение к искомой гравитации? Нет, отвечают специалисты по космологии, их слишком мало, и их плотность не настолько высока. К августу 1997 года были зарегистрированы только шесть коричневых карликов, вернее, только о шести можно говорить с уверенностью. 30 апреля 1992 года журнал Nature написал: «Вне области космологии, для которой они и были изобретены, ни темная материя, ни расширение вселенной не имеют заслуживающей доверия поддержки».

Утерянная антиматерия

Если материя возникла благодаря излучению высокой энергии, порожденному большим взрывом, то одновременно с ней должно было образоваться такое же количество антиматерии. Но не образовалось. Если бы это произошло, материя и антиматерия аннигилировали бы друг друга.

Рождение и смерть звезд

В Библии сказано, что Создатель завершил Свою работу в шесть дней. По теории же большого взрыва звезды рождаются и умирают попеременно. Считается, что звезды формируются при сгущении пылевых облаков. Поскольку утверждается, что процесс этот занимает миллионы лет, никто не видел, как родилась хотя бы одна звезда. Астрономы могут показать на любую туманность и заявить, что это и есть протозвезда. Но так ли это? Со временем звезда сгорает и начинает сжиматься собственной гравитацией. В результате происходит взрыв сверхновой. Подобное зрелище можно было наблюдать в 1987 году, причем в течении нескольких месяцев. 4 июля 1054 года, согласно китайским летописям, такое же явление наблюдали в том районе неба, где сейчас находится Крабовидная туманность. Смерть и разрушение постигнет все существующее, об этом говорит Второй закон термодинамики. Звезды подразделяются на три основных категории: главная последовательность (как наше Солнце), красные гиганты и белые карлики. Считается, что звезда за миллионы лет своей жизни должна пройти все три этих стадии. Диаграммы, отражающие яркость звезд в зависимости от их температуры, ясно показывают существование трех типов звезд.

Звезда Сириус - самая яркая из видимых нами звезд и пятая из ближайших к Земле. Вокруг нее вращается тусклая белая звезда-карлик. Но судя по записям хроник, всего полторы тысячи лет тому назад эта звезда-спутник была красным гигантом. Смерть и разрушение звезд, очевидно, процесс не такой уж и медленный.

Размер и возраст Вселенной

Расстояния в космосе оцениваются по постоянной Хаббла, соотносящей расстояние и скорость удаления. То есть, чтобы узнать расстояние, мы используем то же самое расстояние! Говоря о неопределенности значения этой константы, редактор журнала Nature (27 июля 1995 г., с. 291), отметил: «Досадно, что пока сохраняются расхождения, специалисты по космологии не будут знать, как же относиться к таким вопросам, как, например, был ли большой взрыв на самом деле».

Магнитные поля, обнаруженные у Ганимеда, Марса и других планет, не поддаются объяснению, если исчислять их возраст миллионами лет. Несмотря на то, что вопрос о времени накоплении пыли на Луне был кардинально пересмотрен, до сих пор не решена проблема - почему все-таки на Луне так мало пыли? Не решен вопрос и о нестабильности колец Сатурна.

Антропный принцип

Ядро атома любого химического элемента состоит из протонов и нейтронов. По величине протоны чуть больше нейтронов. Если бы протон весил на 0,2% больше, он был бы нестабилен и распался бы на нейтрон, позитрон и нейтрино. В ядре атомов водорода - один протон, так что если бы протон был нестабилен, не существовали бы ни звезды, ни вода, ни органические молекулы. Стабильность протона не является предметом естественного отбора, значит, он должен быть именно таким с самого начала.

Притягивающая сила гравитации обратно пропорциональна квадрату расстояния R между массами, точнее - R-2.00000. Если бы это соотношение не было таким сверхточным, Вселенная не была бы единым целым.

Земля находится от Солнца на расстоянии, оптимальном для существования на нашей планете жизни. Скорость вращения Земли; ее океаны и атмосфера; Луна; массивный Юпитер, отклоняющий кометы, угрожающие нашей планете (как комета Шумейкера-Леви) своим притяжением - все это служит поддержанию жизни на Земле.

Похоже, что и Вселенная, и Солнечная система, и Земля - все это было создано специально для человека. Наука признает этот факт и называет его антропным принципом.

То, что Создателя нельзя обнаружить и измерить с помощью научных инструментов, отнюдь не значит, что Его нет. Но это толкает ученых на поиски альтернативных объяснений. Один астроном предположил, что наша Вселенная была создана невесть откуда взявшимися разумными существами! А другой считает, что наша Вселенная - одна из миллиардов вселенных, единственная, имеющая все условия для существования жизни...

Разумная Вселенная

Сэр Фред Хойл (Hoyle ), известный астроном, как-то написал: «Картина Вселенной, образования галактик и звезд, по крайней мере как она предстает в астрономии, удивительно нечетка, как пейзаж, видимый в тумане... Очевидно, что в изучении космологии упущен один компонент - тот, что предполагает разумный замысел».

Так был ли большой взрыв? Красное смещение и фоновое излучение не могут служить убедительными доказательствами этому. Законы термодинамики, гравитации и теория информации, тем не менее, дают достаточно однозначный ответ. Никакого взрыва не было.

Д-р Дэвид Роузвер

Dr.David Rosevear. Was there a Big Bang?

Creation Science Movement (UK), Pamphlet 317. Перевод с английского Елена Буклерская.

Большой взрыв подтверждается множеством фактов:

Из общей теории относительности Эйнштейна следует, что вселенная не может быть статичной; она должна или расширяться, или сжиматься.

Чем дальше галактика, тем быстрее она удаляется от нас (закон Хаббла). Это указывает на расширение вселенной. Расширение вселенной означает, что в отдалённом прошлом вселенная была небольшой и компактной.

Модель Большого взрыва предсказывает, что космическое микроволновое реликтовое излучение должно проявляться во всех направлениях, имея спектр абсолютно чёрного тела и температуру около 3°К. Мы наблюдаем точный спектр абсолютно чёрного тела с температурой 2,73°К.

Реликтовое излучение равномерно до 0,00001. Небольшая неравномерность должна существовать для объяснения неравномерности распределения материи в сегодняшней вселенной. Такая неравномерность наблюдается и в предсказанном размере.

По теории Большого взрыва предсказывается наблюдаемое количество изначального водорода, дейтерия, гелия и лития. Никаким другим моделям этого не удаётся.

По теории Большого взрыва предсказывается, что вселенная с течением времени меняется. Из-за конечности скорости света наблюдение на дальних расстояниях позволяет нам взглянуть в прошлое. Среди прочих изменений мы видим, что, когда вселенная была моложе, квазары были более обычным явлением, а звёзды были более голубыми.

Существует, по крайней мере, 3 способа определить возраст Вселенной.Я опишу ниже:
*Возраст химических элементов.
*Возраст старейших шаровых скоплений.
*Возраст старейших звезд белых карликов.
*Возраст Вселенной также может быть оценен исходя из космологических моделей,основанных на значении Постоянной Хаббла,а также плотностей материи и темной энергии.Этот возраст, основанный на модели, составляет в настоящее время 13.7 ± 0.2 миллиардов лет.

Экспериментальные измерения согласуются с возрастом на основе модели, что способствует укреплению нашего доверия модели Большого взрыва.

К настоящему моменту с помощью спутника COBE составлена карта фонового излучения с его волнообразными структурами и флуктуациями амплитуды на протяжении нескольких миллиардов световых лет от Земли. Все эти волны являются сильно увеличенными изображениями тех мельчайших структур, с которых начинался Большой Взрыв. Размер этих структур был даже меньше размера субатомных частиц.
Этими же проблемами занимается и новый спутник MAP (Microwave Anisotropy Probe), который был отправлен в космос в пошлом году. Его задача - собирать информацию о микроволновом излучении, оставшемся от Большого Взрыва.

Свет, идущий к Земле от дальних звезд и галактик (вне зависимости от их расположения относительно Солнечной системы), имеет характерный красный сдвиг (Barrow, 1994). Такой сдвиг обусловлен доплеровским эффектом - увеличением длины световых волн при быстром удалении источника света от наблюдателя. Интересно, что этот эффект отмечается во всех направлениях, а значит, все дальние объекты движутся от Солнечной системы. Однако так происходит отнюдь не потому, что Земля - центр Вселенной. Скорее, ситуацию можно описать при помощи сравнения с воздушным шариком, раскрашенным «в горошек». По мере надувания шарика расстояние между горошинами увеличивается. Вселенная расширяется, и это происходит уже долгое время. Космологи считают, что Вселенная образовалась в течение одной минуты 10-20 миллиардов лет назад. Она «вылетела во все стороны» из одной точки, где материя находилась в состоянии невообразимой концентрации. Это событие называют Большим Взрывом.

Решающим доказательством в пользу теории Большого Взрыва стало существование фоновой космической радиации, так называемого реликтового излучения. Эта радиация - остаточный признак энергии, выделившейся в начале взрыва. Реликтовое излучение было предсказано в 1948 году и экспериментально зафиксировано в 1965-м. Оно является микроволновым излучением, которое можно определить в любой точке космоса, и создает фон для всех прочих радиоволн. Излучение имеет температуру 2,7 градуса по Кельвину (Taubes, 1997). Вездесущность этой остаточной энергии подтверждает не только факт возникновения (а не вечного существования) Вселенной, но и то, что ее рождение было взрывоподобно.

Если мы предположим, что Большой Взрыв произошел 13500 миллионов лет назад (что подтверждается несколькими фактами), то первые галактики возникли из гигантских газовых скоплений около 12500 миллионов лет назад (Calder, 1983). Звезды этих галактик были микроскопическими скоплениями сильно сжатого газа. Сильное гравитационное давление в их ядрах инициировало реакции термоядерного синтеза, превращающие водород в гелий с побочным излучением энергии (Davies, 1994). По мере старения звезд атомная масса элементов внутри них возрастала. Фактически, все элементы тяжелее водорода являются продуктами существования звезд. В раскаленной топке звездного ядра образовывались все более и более тяжелые элементы. Именно таким путем появились железо и элементы с меньшей атомной массой. Когда ранние звезды израсходовали свое «топливо», то более не могли противостоять силам гравитации. Звезды сжались, а затем взорвались сверхновыми. Во время взрыва сверхновых появились элементы с атомной массой больше, чем у железа. Неоднородный внутризвездный газ, оставшийся после ранних звезд, стал строительным материалом, из которого могли сформироваться новые солнечные системы. Скопления этого газа и пыли частично формировались в результате взаимного притяжения частиц. Если масса газового облака достигала определенного критического предела, гравитационное давление запускало процесс ядерного синтеза и из остатков старой звезды рождалась новая.

Доказательства модели Большого взрыва исходят из множества наблюдаемых данных, которые соответствуют модели Большого взрыва. Ни одно из этих доказательств Большого взрыва, как научной теории не является определяющим. Многие из этих фактов соответствуют как Большому взрыву, так и некоторым другим космологическим моделям, но взятые все вместе эти наблюдения показывают что модель Большого взыва является на сегодня наилучшей моделью Вселенной. Эти наблюдения включают:

Черноту ночного неба - Парадокс Олбера.
Закон Хаббла - Закон линейной зависимости расстояние от величины красного смещения. Этим данный на сегодня очень точны.
Гомогенность - четкие данные, показывающие что наше расположение во Вселенной не уникально.
Изотропия пространства - очень четкие данные, показывающие, что небо выглядит одинаковым образом во всех направлениях с точностью в 1 часть на 100,000.
Замедление времени на кривых яркости сверхновых звезд.
Наблюдения приведенные выше соответствуют как Большому взрыву так и стационарной модели, но многие наблюдения поддерживают Большой взрыв лучше, чем Стационарную модель:
Зависимость числа источников радиоизлучения и квазаров от яркости. Она показывает, что Вселенная эволюционировала.
Существование чернотельного реликтового излучения. Это показывает что Вселенная развилась из плотного, изотермического состояния.
Изменение Tреликт. с изменением величины красного смещения. Это является прямым наблюдением эволюции Вселенной.
Содержания Дейтерия, 3He, 4He, и 7Li. Содержание всех этих легких изотопов хорошо соответствует предсказываемым реакциям происходящим в первые три минуты.
Наконец, анизотропия угловой интенсивности реликтового излучения составляющая одну часть на миллион соответствует модели Большого взрыва с доминирующей темной матеией, которая прошла через инфляционную стадию.

Точные измерения, проведенные с помощью спутника "COBE", подтвердили, что реликтовое излучение заполняет Вселенную и имеет температуру 2,7 градусов Кельвина.Это излучение регистрируется со всех направлений и достаточно однородно. Согласно теории, Вселенная расширяется и, следовательно, в прошлом она должна была быть более плотной. А следовательно и температура излучения в то время должна быть выше. Теперь это беспорный факт.

Хронология:

* Планковское время: 10-43 секунды. Через этот промеж. времени гравитацию можно рассматривать как классический фон на котором развиваются частицы и поля, подчиняясь при этом законам квантовой механики. Область размером около 10-33 см в поперечнике гомогенна и изотропна, Температура T=1032K.
* Инфляция. В хаотичной инфляционной модели Линде (Linde) инфляция начинается в момент Планковского времени, хотя она может начаться, когда температура упадет до той границы, при которой внезапно разрушится симметрия Великой теории объединения (GUT). Это происходит при температурах от 1027 до 1028K через 10-35 секунд после Большого взрыва.
* Инфляция заканчивается. Время равно 10-33 секунды, температура по-прежнему 1027 - 1028K поскольку плотность энергии вакуума, которая разгоняет инфляцию, преобразуется в тепло. В конце инфляции скорость расширения так велика, что видимый возраст Вселенной составляет лишь 10-35 секунды. Благодаря инфляции, гомогенная область от Планковского момента времени имеет поперечник не менее 100 см, т.е. возросла более чем в 1035 раз с момента Планковского времени. Однако, квантовые флуктуации в ходе инфляции создают участки негомогенности с низкой амплитудой и случайным распределением, имеющим одинаковую энергию во всех диапазонах.
* Бариогенезис: небольшое различие в скоростях реакций для материи и антиматерии приводит к смеси, в которой содержится около 100,000,001 протонов на каждые 100,000,000 антипротонов (и 100,000,000 фотонов).
* Вселенная растет и охлаждается до момента 0.0001 секунды после Большого взрыва и температуры около T=1013 K. Антипротоны аннигилируют с протонами, в результате чего остается только материя, но с очень большим количеством фотонов на каждый выживший протон и нейтрон.
* Вселенная растет и охлаждается до момента в 1 секунду после Большого взрыва, температура T=1010 K. Вымораживаются слабые взаимодействия при отношении протон/нейтрон около 6. Гомогенный участок достигает к этому моменту размера 1019.5 см.
* Вселенная растет и охлаждается до момента 100 секунд после Большого взрыва. Температура 1 миллиард градусов, 109 K. Аннигилируют электроны и позитроны, образуя еще более фотонов, тогда как протоны и нейтроны соединяются, образуя ядра дейтерия (тяжелого водорода). Большая часть ядер дейтерия объединяется с образованием ядер гелия. В конечном итоге имеется по массе около 3/4 водорода, 1/4 гелия; отношение дейтерий/протон равно 30 частей на миллион. На каждый протон или нейтрон присутствует около 2 миллиардов фотонов.
* Через месяц после БВ ослабевают процессы, которые преобразуют поле излучения к спектру излучения абсолютно черного тела, теперь они отстают от расширения Вселенной, поэтому спектр реликтового излучения сохраняет информацию, относящуюся к этому времени.
* Плотность материи сравнивается с плотность излучения через 56,000 лет после БВ. Температура 9000 K. Негомогенности темной материи могут начать сжиматься.
* Объединяются протоны и электроны, образуя нейтральный водород. Вселенная становится прозрачной. Температура T=3000 K, время 380,000 лет после БВ. Обычная материя теперь может падать на облака темной материи. Реликтовое излучение с этого времени свободно путешествует до настоящего времени, поэтому анизотропия реликтового излучения дает картину Вселенной в то время.
* Через 100-200 миллионов лет после БВ образуются первые звезды, и своим излучением вновь ионизируют Вселенную.
* Взрываются первые сверхновые, наполняя Вселенную углеродом, азотом, кислородом, кремнием, магнием, железом, и так далее, вплоть до Урана.
* Как собранные вместе облака темной материи, звезды и газ образуются Галактики.
* Образуются скопления галактик.
* 4.6 милиарда лет назад образуется Солнце и Солнечная система.
* Сегодня: Время 13.7 миллиардов лет после Большого взрыва, температура T=2.725 K. Гомогенный участок сегодня составляет не менее 1029 см в поперечнике, что больше, чем наблюдаемая часть Вселенной.

Большой Взрыв был! Вот что, например, написал по этому поводу академик Я.Б. Зельдович в 1983 г.: «Теория «Большого Взрыва» в настоящий момент не имеет сколько-нибудь заметных недостатков. Можно даже сказать, что она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные выступления не в состоянии препятствовать успеху новых теорий».

Данные радиоастрономии свидетельствуют о том, что в прошлом далекие внегалактические радиоисточники излучали больше, чем сейчас. Следовательно, эти радиоисточники эволюционируют. Когда мы сейчас наблюдаем мощный радиоисточник, мы не должны забывать о том, что перед нами его далёкое прошлое (ведь сегодня радиотелескопы принимают волны, которые были излучены миллиарды лет назад). Тот факт, что радиогалактики и квазары эволюционируют, причем время их эволюции соизмеримо со временем существования Метагалактики, принято так же рассматривать в пользу теории Большого Взрыва.

Важное подтверждение «горячей Вселенной» следует из сравнения наблюдаемой распространенности химических элементов с тем соотношением между количеством гелия и водорода (около 1/4 гелия и примерно 3/4 водорода), которое возникло во время первичного термоядерного синтеза.

Изобилие легких элементов
Ранняя Вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер (так называемый нуклеосинтез) на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и, в незначительном количестве, литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже — при формировании звезд (см. Эволюция звезд).

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями. По моему мнению, это лучшее подтверждение гипотезы Большого взрыва.

Помимо двух приведенных выше доказательств (микроволновой фон и соотношение легких элементов) недавние работы (см. Инфляционная стадия расширения Вселенной) показали, что сплав космологии Большого взрыва и современной теории элементарных частиц разрешает многие кардинальные вопросы устройства Вселенной. Конечно, проблемы остаются: мы не можем объяснить саму первопричину возникновения Вселенной; не ясно нам и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено более чем достаточно.

Говорят, что время – самая загадочная материя. Человек, сколько не пытается понять его законы и научиться управлять ими, всякий раз попадает впросак. Делая последний шаг к разгадке великой тайны, и считая, что она, практически, уже у нас в кармане, мы всякий раз убеждаемся, что она все так же неуловима. Однако человек – существо пытливое и поиск ответов на извечные вопросы для многих становится смыслом жизни.

Одной из таких тайн стало сотворение мира. Последователи «теории Большого взрыва», логично объясняющей происхождение жизни на Земле стали задаваться вопросом о том, что было до Большого взрыва, и было ли что-нибудь вообще. Тема для исследований благодатная, а результаты могут заинтересовать широкую общественность.

У всего на свете есть прошлое – у Солнца, Земли, Вселенной, но откуда взялось все это многообразие и что было до него?

Дать однозначный ответ вряд ли возможно, но выдвинуть гипотезы и поискать им доказательства вполне реально. В поисках истины, исследователи получили не один, а несколько ответов на вопрос «что было до Большого взрыва?». Самый популярный из них звучит несколько обескураживающе и довольно смело – Ничего. Возможно ли, что все сущее произошло из ничего? Что Ничто породило все существующее?

Собственно, это нельзя назвать абсолютной пустотой и там все равно происходят какие-то процессы? Все было порождено ничем? Ничто – полное отсутствие не только материи, молекул и атомов, но даже времени и пространства. Богатая почва для деятельности писателей-фантастов!

Мнения ученых об эпохе до Большого взрыва

Однако Ничто нельзя потрогать, к нему не применимы обычные законы, а значит, либо домысливать и выстраивать теории, либо попытаться создать условия, близкие к тем, в результате которых произошел Большой взрыв, и убедиться в правильности своих предположений. В специальных камерах, из которых были удалены частицы вещества, понизили температуру, приблизив к условиям космоса. Результаты наблюдений дали косвенные подтверждения научным теориям: ученые изучали среду, в которой теоретически мог возникнуть Большой взрыв, но назвать эту среду «Ничто» оказалось не совсем корректно. Происходящие мини-взрывы могли бы привести к более масштабному взрыву, породившему Вселенную.

Теории вселенных до Большого взрыва

Приверженцы иной теории утверждают, что до Большого взрыва существовали две другие Вселенные, развивавшиеся по собственным законам. Какими именно они были – ответить сложно, но согласно выдвигаемой теории, Большой взрыв произошел в результате их столкновения и привел к полному уничтожению прежних Вселенных и, одновременно, к рождению нашей, существующей и ныне.

Теория «сжатия» говорит о том, что Вселенная существует, и существовала всегда, меняются лишь условия ее развития, которые приводят к исчезновению жизни в одном регионе и возникновению в другом. Жизнь исчезает в результате «схлопывания» и возникает после взрыва. Как бы парадоксально это не звучало. Такая гипотеза имеет большое количество сторонников.

Есть еще одно предположение: в результате Большого взрыва из небытия возникла новая Вселенная и раздулась, словно мыльный пузырь, до гигантских размеров. В это время от нее отпочковывались «пузырьки», которые впоследствии, стали другими Галактиками и Вселенными.

Теория «естественного отбора» предполагает, что речь идет о «естественном космическом отборе», вроде того, о котором вещал Дарвин, только в более крупных размерах. У нашей Вселенной был свой предок, у него, в свою очередь, так же имелся свой предок. Согласно этой теории, нашу Вселенную породила Черная дыра. и представляют большой интерес для ученых. По этой теории для того, чтобы появилась новая Вселенная, необходимы механизмы «размножения». Таким механизмом и становится Черная дыра.

А может быть, правы те, кто считает, что по мере роста и развития наша Вселенная расширяется, идя навстречу Большому взрыву, который станет началом для новой Вселенной. Значит, когда-то давно, неизвестная и, увы, исчезнувшая Вселенная стала прародительницей нашей новой вселенной. Цикличность этой системы выглядит логично и приверженцев у данной теории немало.

До какой степени приблизились к истине последователи той или иной гипотезы – сказать сложно. Каждый выбирает то, что ближе по духу и пониманию. Религиозный мир дает на все вопросы свои ответы и укладывает картину создания мира в божественные рамки. Атеисты ищут ответы, стремясь докопаться до сути и потрогать своими руками эту самую суть. Можно удивиться, чем вызвано такое упорство в поисках ответа на вопрос о том, что было до Большого взрыва, ведь практическую пользу из этого знания извлечь довольно проблематично: человек не станет властелином Вселенной, по его слову и желанию не зажгутся новые звезды и не погаснут существующие. Но ведь так интересно то, что не изучено! Человечество бьется над разгадками тайн, и кто знает, быть может, рано или поздно, они дадутся человеку в руки. Вот только, как он этими тайными знаниями воспользуется?

Иллюстрации: КЛАУС БАХМАНН, журнал «GEO»

(25 votes, average: 4,84 out of 5)



12. Чем вызван Большой взрыв?

Парадокс возникновения

Ни одна из лекций по космологии, которые мне доводилось читать, не обходилась без вопроса о том, чем же был вызван Большой взрыв? Еще несколько лет назад я не знал истинного ответа; сегодня, полагаю, он известен.

По существу в этом вопросе в завуалированной форме содержится два вопроса. Во-первых, нам хотелось бы знать, почему развитие Вселенной началось со взрыва и чем в первую очередь был вызван этот взрыв. Но за чисто физической проблемой скрывается другая, более глубокая проблема философского характера. Если Большой взрыв знаменует начало физического существования Вселенной, включая возникновение пространства и времени, то в каком смысле можно говорить о том, что вызвало этот взрыв?

С точки зрения физики внезапное возникновение Вселенной в результате гигантского взрыва представляется в какой-то степени парадоксальным. Из четырех управляющих миром взаимо­действий только гравитация проявляется в космическом масштабе, причем, как показывает наш опыт, гравитация имеет характер притяжения. Однако для взрыва, ознаменовавшего рождение Вселенной, по-видимому, нужна была сила отталкивания невероятной величины, которая смогла, в клочья разорвать космос и вызвать его расширение, продолжающееся и по сей день.

Это кажется странным, поскольку, если во Вселенной господствуют силы гравитации, то ей следовало бы не расширяться, а сжиматься. Действительно, гравитационные силы притяжения заставляют физические объекты сжиматься, а не взрываться. Например, очень плотная звезда теряет способность противостоять собственному весу и коллапсирует, образуя нейтронную звезду или черную дыру. Степень сжатия вещества в очень ранней Вселенной была значительно выше, чем у самой плотной звезды; поэтому нередко возникает вопрос, почему первичный космос с самого начала не сколлапсировал в черную дыру.

Обычно на это отвечают, что первичный взрыв следует просто принимать за начальное условие. Такой ответ явно не удовлетворителен и вызывает недоумение. Безусловно, под влиянием гравитации скорость космического расширения с самого начала непрерывно уменьшалась, однако в момент рождения Вселенная расширялась бесконечно быстро. Взрыв не был вызван какой-либо силой - просто развитие Вселенной началось с расширения. Если бы взрыв оказался менее сильным, гравитация очень скоро воспрепятствовала бы разлету вещества. В результате расширение сменилось бы сжатием, которое приняло бы катастрофический характер и превратило Вселенную в нечто подобное черной дыре. Но в действительности взрыв оказался достаточно «большим», что дало возможность Вселенной, преодолев собственную гравитацию, либо продолжать вечно расширяться за счет силы первичного взрыва, либо по крайней мере просуществовать на протяжении многих миллиардов лет, прежде чем подвергнуться сжатию и уйти в небытие.

Недостаток этой традиционной картины состоит в том, что она ни в коей мере не объясняет Большого взрыва. Фундаментальное свойство Вселенной вновь просто трактуется как начальное условие, принятое ad hoc (на данный случай); по существу, здесь только утверждается, что Большой взрыв имел место. По-прежнему остается непонятным, почему сила взрыва была именно такой, а не иной. Почему взрыв не был еще более сильным, чтобы Вселенная расширялась сейчас значительно быстрее? Можно также спросить, почему Вселенная в настоящее время не расширяется значительно медленнее или вообще не сжимается. Разумеется, если бы взрыв не имел достаточной силы, Вселенная вскоре коллапсировала бы и некому было бы задавать подобные вопросы. Вряд ли, однако, подобные рассуждения можно принять за объяснение.

При более детальном анализе оказывается, что парадокс происхождения Вселенной в действительности еще более сложен, чем описано выше. Тщательные измерения показывают, что скорость расширения Вселенной очень близка к критическому значению, при котором Вселенная способна преодолеть собственную гравитацию и расширяться вечно. Будь эта скорость чуть меньше - и произошел бы коллапс Вселенной, а будь она чуть больше - космическое вещество давно бы полностью рассеялось. Интересно выяснить, насколько точно скорость расширения Вселенной попадает в этот очень узкий допустимый интервал между двумя возможными катастрофами. Если бы в момент времени, соответствующий 1 с, когда картина расширения уже четко определилась, скорость расширения отличалась бы от своего реального значения более чем на 10^-18 , этого оказалось бы достаточно для полного нарушения тонкого баланса. Таким образом, сила взрыва Вселенной с почти невероятной точностью соответствует ее гравитационному взаимодействию. Большой взрыв, таким образом, это не просто какой-то далекий взрыв - это был взрыв совершенно определенной силы. В традиционном варианте теории Большого Взрыва приходится принимать не только сам факт взрыва, но и то, что взрыв произошел чрезвычайно прихотливым образом. Иными словами, начальные условия оказываются исключительно специфическими.

Скорость расширения Вселенной - лишь одна из нескольких очевидных космических загадок. Другая связана с картиной расширения Вселенной в пространстве. По данным современных наблюдений. Вселенная в больших масштабах чрезвычайно однородна, что касается распределения вещества и энергии. Глобальная структура космоса почти одинакова как при наблюдении с Земли, так и из отдаленной галактики. Галактики рассеяны в пространстве с одинаковой средней плотностью, и из каждой точки Вселенная выглядит одинаково по всем направлениям. Заполняющее Вселенную первичное тепловое излучение падает на Землю, имея во всех направлениях одну и ту же температуру с точностью не ниже 10-4 . Это излучение на пути к нам проходит в пространстве миллиарды световых лет и несет на себе отпечаток любого встречающегося ему отклонения от однородности.

Крупномасштабная однородность Вселенной сохраняется по мере расширения Вселенной. Отсюда следует, что расширение происходит однородно и изотропно с очень высокой степенью точности. Это означает, что скорость расширения Вселенной не только одинакова по всем направлениям, но и постоянна в различных областях. Если бы Вселенная в одном направлении расширялась быстрее, чем в других, то это привело бы к уменьшению температуры фонового теплового излучения в этом направлении и изменило бы видимую с Земли картину движения галактик. Таким образом, эволюция Вселенной не просто началась со взрыва строго определенной силы - взрыв был четко «организован», т.е. произошел одновременно, точно с одинаковой силой во всех точках и по всем направлениям.

Крайне маловероятно, чтобы подобное одновременное и согласованное извержение могло произойти чисто самопроизвольно, и это сомнение усиливается в рамках традиционной теории Большого взрыва тем, что различные области первичного космоса причинно не связаны друг с другом. Дело в том, что, согласно теории относительности, никакое физическое воздействие не может распространяться быстрее света. Следовательно, различные области пространства могут оказаться причинно связанными друг с другом лишь по прошествии определенного промежутка времени. Например, спустя 1с после взрыва свет может пройти расстояние не более одной световой секунды, что соответствует 300 тыс. км. Области Вселенной, разделенные большим расстоянием, через 1с еще не будут оказывать влияния друг на друга. Но к этому моменту наблюдаемая нами область Вселенной уже занимала пространство не менее 10^14 км в поперечнике. Следовательно, Вселенная состояла примерно из 10^27 причинно не связанных друг с другом областей, каждая из которых, тем не менее, расширялась с точно одинаковой скоростью. Даже сегодня, наблюдая тепловое космическое излучение, идущее с противоположных сторон звездного неба, мы регистрируем совершенно одинаковые «дактилоскопические» отпечатки областей Вселенной, разделенных огромными расстояниями: эти расстояния оказываются в 90с лишним раз больше расстояния, которое мог бы пройти свет с момента испускания теплового излучения.

Как объяснить столь замечательную согласованность различных областей пространства, которые, очевидно, никогда не были связаны друг с другом? Как возникло столь сходное поведение? В традиционном ответе вновь звучит ссылка на особые начальные условия. Исключительная однородность свойств первичного взрыва рассматривается просто как факт: так возникла Вселенная.

Крупномасштабная однородность Вселенной выглядит еще более загадочной, если учесть, что в малых масштабах Вселенная отнюдь не однородна. Существование отдельных галактик и галактических скоплений свидетельствует об отклонении от строгой однородности, причем это отклонение к тому же повсеместно одинаково по масштабам и величине. Поскольку гравитация стремится увеличить любое начальное скопление вещества, степень неоднородности, необходимая для образования галактик, во время Большого взрыва была значительно меньше, нежели теперь. Однако в начальной фазе Большого взрыва должна была все-таки присутствовать небольшая неоднородность, иначе галактики никогда бы не образовались. В старой теории Большого взрыва эти неоднородности на ранней стадии также приписывались «начальным условиям». Таким образом, мы должны были поверить, что развитие Вселенной началось не из совершенно идеального, а из крайне необычного состояния.

Все сказанное можно суммировать следующим образом: если единственной силой во Вселенной является гравитационное притяжение, то Большой взрыв следует трактовать как «ниспосланный богом», т.е. не имеющий причины, с заданными начальными условиями. Кроме того, для него характерна поразительная согласованность; чтобы прийти к существующей структуре, Вселенная должна была с самого начала развиваться надлежащим образом. В этом и заключается парадокс возникновения Вселенной.

Поиск антигравитации

Парадокс возникновения Вселенной удалось разрешить лишь в последние годы; однако основную идею решения можно про­следить в далекой истории, в те времена, когда еще не существовало ни теории расширения Вселенной, ни теории Большого взрыва. Ещё Ньютон понимал, сколь сложную проблему представляет устойчивость Вселенной. Каким образом звезды сохраняют свое положение в пространстве, не имея опоры? Универсальный характер гравитационного притяжения должен был привести к стягиванию звезд в скопления вплотную друг к другу.

Чтобы избежать этой нелепости, Ньютон прибег к весьма любопытному рассуждению. Если бы Вселенная коллапсировала под действием собственной гравитации, каждая звезда «падала» бы в направлении центра скопления звезд. Предположим, однако, что Вселенная бесконечна и звезды распределены в среднем равномерно по бесконечному пространству. В этом случае вообще отсутствовал бы общий центр, по направлению к которому могли бы падать все звезды, - ведь в бесконечной Вселенной все области идентичны. Любая звезда испытывала бы воздействие гравитационного притяжения всех своих соседей, но вследствие усреднения этих воздействий по различным направлениям не возникло бы никакой результирующей силы, стремящейся переместить данную звезду в определенное положение относительно всей совокупности звезд.

Когда спустя 200 лет после Ньютона Эйнштейн создал новую теорию гравитации, он также был озадачен проблемой, каким образом Вселенной удается избежать коллапса. Его первая работа по космологии была опубликована до того, как Хаббл открыл расширение Вселенной; поэтому Эйнштейн, подобно Ньютону, предполагал, что Вселенная статична. Однако Эйнштейн пытался решить проблему устойчивости Вселенной гораздо более прямым путем. Он считал, что для предотвращения коллапса Вселенной под действием ее собственной гравитации должна существовать иная космическая сила, которая могла бы противостоять гравитации. Эта сила должна быть скорее силой отталкивания, а не притяжения, чтобы компенсировать гравитационное притяжение. В этом смысле подобную силу можно было бы назвать « антигравитационной », хотя правильнее говорить о силе космического отталкивания. Эйнштейн в этом случае не просто произвольно придумал эту силу. Он показал, что в его уравнения гравитационного поля можно ввести дополнительный член, который приводит к появлению силы, обладающей нужными свойствами.

Несмотря на то, что представление о силе отталкивания, противодействующей силе гравитации, само по себе достаточно просто и естественно, в действительности свойства такой силы оказываются совершенно необычными. Разумеется, никакой подобной силы на Земле не замечено, и никакого намека не нее не обнаружено на протяжении нескольких веков существования планетной астрономии. Очевидно, если сила космического отталкивания и существует, то она не должна оказывать сколько-нибудь заметного действия на малых расстояниях, но ее величина значительно возрастает в астрономических масштабах. Подобное поведение противоречит всему предшествующему опыту изучения природы сил: обычно они интенсивны на малых расстояниях и ослабевают с увеличением расстояния. Так, электромагнитное и гравитационное взаимодействия непрерывно убывают по закону обратных квадратов. Тем не менее, в теории Эйнштейна естественным образом появилась сила с такими довольно необычными свойствами.

Не следует думать о введенной Эйнштейном силе космического отталкивания как о пятом взаимодействии в природе. Это просто причудливое проявление самой гравитации. Нетрудно показать, что эффекты космического отталкивания можно отнести на счет обычной гравитации, если в качестве источника гравитационного поля выбрать среду с необычными свойствами. Обычная материальная среда (например, газ) оказывает давление, тогда как обсуждаемая здесь гипотетическая среда должна обладать отрицательным давлением, или натяжением. Чтобы более наглядно представить, о чем идет речь, вообразим, что нам удалось наполнить таким космическим веществом сосуд. Тогда в отличие от обычного газа, гипотетическая космическая среда будет не давить на стенки сосуда, а стремиться втянуть их внутрь сосуда.

Таким образом, мы можем рассматривать космическое отталкивание как своего рода дополнение гравитации или как явление, обусловленное обычной гравитацией, присущей невидимой газообразной среде, заполняющей все пространство и обладающей отрицательным давлением. Нет никакого противоречия в том, что, с одной стороны, отрицательное давление как бы всасывает внутрь стенки сосуда, а, с другой - эта гипотетическая среда отталкивает галактики, а не притягивает их. Ведь отталкивание обусловлено гравитацией среды, а отнюдь не механическим действием. В любом случае, механические силы создаются не самим давлением, а разностью давлений, но предполагается, что гипотетическая среда заполняет все пространство. Ее нельзя ограничить стенками сосуда, и находящийся в этой среде наблюдатель вообще не воспринимал бы ее как ощутимую субстанцию. Пространство выглядело бы и воспринималось совершенно пустым.

Несмотря на столь удивительные особенности гипотетической среды, Эйнштейн в свое время заявил, что построил удовлетворительную модель Вселенной, в которой поддерживается равновесие между гравитационным притяжением и открытым им космическим отталкиванием. С помощью несложных расчетов Эйнштейн оценил величину силы космического отталкивания, необходимую, чтобы уравновесить гравитацию во Вселенной. Ему удалось подтвердить, что отталкивание должно быть столь малым в пределах Солнечной системы (и даже в масштабах Галактики), что его невозможно обнаружить экспериментально. Какое-то время казалось, что вековая загадка блестяще решена.

Однако затем ситуация изменилась к худшему. Прежде всего, возникла проблема устойчивости равновесия. Основная идея Эйнштейна основывалась на строгом балансе сил притяжения и отталкивания. Но, как и во многих других случаях строгого баланса, здесь также выявились тонкие детали. Если бы, например, статическая вселенная Эйнштейна немного расширилась, то гравитационное притяжение (ослабевающее с расстоянием) несколько уменьшилась бы, тогда как сила космического отталкивания (возрастающая с расстоянием) слегка возросла бы. Это привело бы к нарушению баланса в пользу сил отталкивания, что вызвало бы дальнейшее неограниченное расширение Вселенной под действием всепобеждающего отталкивания. Если бы, напротив, статическая вселенная Эйнштейна слегка бы сжалась, то гравитационная сила возросла, а сила космического отталкивания уменьшилась, что привело бы к нарушению баланса в пользу сил притяжения и, как следствие, ко все более быстрому сжатию, а в конечном итоге - к коллапсу, которого, как казалось Эйнштейну, он избежал. Таким образом, при малейшем отклонении строгий баланс нарушился бы, и космическая катастрофа была бы неизбежна.

Позднее, в 1927 г., Хаббл открыл явление разбегания галактик (т.е. расширение Вселенной), что лишило смысла проблему равновесия. Стало ясно, что Вселенной не угрожает сжатие и коллапс, поскольку она расширяется. Если бы Эйнштейн не был отвлечен поиском силы космического отталкивания, он наверняка пришел бы к этому выводу теоретически, предсказав таким образом расширение Вселенной на добрый десяток лет раньше, чем его удалось открыть астрономам. Такое предсказание, несомненно, вошло бы в историю науки как одно из самых выдающихся (такое предсказание и было сделано на основе уравнения Эйнштейна в 1922-1923 гг. профессором Петроградского университета А. А. Фридманом). В конце концов Эйнштейну пришлось с досадой отречься от космического отталкивания, которое он впоследствии считал «самой большой ошибкой своей жизни». Однако на этом история отнюдь не закончилась.

Эйнштейн придумал космическое отталкивание для решения несуществующей проблемы статической вселенной. Но, как это всегда бывает, джинна, выпущенного из бутылки, невозможно загнать обратно. Идея о том, что и динамика Вселенной, возможно, обусловлена противоборством сил притяжения и отталкивания, продолжала жить. И хотя астрономические наблюдения не давали никаких свидетельств существования космического отталкивания, они не могли доказать и его отсутствие - оно могло быть просто слишком слабым, чтобы проявиться.

Уравнения гравитационного поля Эйнштейна, хотя и допускают наличие силы отталкивания: не накладывают ограничений на ее величину. Наученный горьким опытом, Эйнштейн был вправе постулировать, что величина этой силы строго равна нулю, тем самым полностью исключая отталкивание. Однако это было отнюдь не обязательно. Некоторые ученые сочли необходимым сохранить отталкивание в уравнениях, хотя в этом уже не было нужды с точки зрения первоначальной задачи. Эти ученые считали, что при отсутствии надлежащих доказательств нет оснований полагать силу отталкивания равной нулю.

Не составляло особого труда проследить последствия, к которым приводит сохранение силы отталкивания в сценарии расширяющейся Вселенной. На ранних этапах развития, когда Вселенная еще находится в сжатом состоянии, отталкиванием можно пренебречь. В течение этой фазы гравитационное притяжение замедляло темп расширения - в полной аналогии с тем, как притяжение Земли замедляет движение ракеты, запущенной вертикально вверх. Если принять без объяснений, что эволюция Вселенной началась с быстрого расширения, то гравитация должна постоянно уменьшать скорость расширения до величины, наблюдаемой в настоящее время. С течением времени по мере рассеяния вещества гравитационное взаимодействие ослабевает. Напротив, космическое отталкивание возрастает, поскольку галактики продолжают удаляться друг от друга. В конечном счете, отталкивание превзойдет гравитационное притяжение и скорость расширения Вселенной вновь начнет возрастать. Отсюда можно сделать вывод, что во Вселенной доминирует космическое отталкивание, и расширение будет происходить вечно.

Астрономы показали, что такое необычное поведение Вселенной, когда расширение сначала замедляется, а затем вновь ускоряется, должно было бы отразиться в наблюдаемом движении галактик. Но при самых тщательных астрономических наблюдениях не удалось выявить каких-либо убедительных свидетельств такого поведения, хотя время от времени высказываются и противоположные утверждения.

Интересно, что идею расширяющейся Вселенной голландский астроном Вилем де Ситтер выдвинул еще в 1916 г. - за много лет до того, как Хаббл экспериментально открыл это явление. Де Ситтер утверждал, что если из Вселенной удалить обычное вещество, то гравитационное притяжение исчезнет, и в космосе будут безраздельно господствовать силы отталкивания. Это вызовет расширение Вселенной - по тем временам это была новаторская идея.

Поскольку наблюдатель не в состоянии воспринимать странную невидимую газообразную среду с отрицательным давлением, ему просто будет казаться, будто расширяется пустое пространство. Расширение можно было бы обнаружить, повесив в различные места пробные тела и наблюдая их удаление друг от друга. Представление о расширении пустого пространства рассматривалось в то время как некий курьез, хотя, как мы увидим, именно оно оказалось пророческим.

Итак, какой же вывод можно сделать из этой историй? Тот факт, что астрономы не обнаруживают космического отталкивания, еще не может служить логическим доказательством его отсутствия в природе. Вполне возможно, что оно просто слишком слабое, чтобы его удалось зарегистрировать современными приборами. Точность наблюдения всегда ограничена, и потому можно оценить только верхний предел этой силы. Против этого можно было бы возразить, что с эстетической точки зрения законы природы выглядели бы проще в отсутствие космического отталкивания. Подобные обсуждения тянулись многие годы, не приводя к определенным результатам, пока внезапно на проблему не взглянули под совершенно новым ракурсом, который придал ей неожиданную актуальность.

Инфляция: объяснение Большого взрыва

В предыдущих разделах мы говорили, что если сила космического отталкивания и существует, то она должна быть очень слабой, настолько слабой, чтобы не оказать сколько-нибудь значительного влияния на Большой взрыв. Однако такой вывод основывается на предположении, что величина отталкивания не изменяется со временем. Во время Эйнштейна это мнение разделяли все ученые, поскольку космическое отталкивание вводилось в теорию «рукотворно». Никому не приходило в голову, что космическое отталкивание может вызываться другими физическими процессами, возникающими по мере расширения Вселенной. Если бы подобная возможность предусматривалась, то космология могла оказаться иной. В частности, не исключается сценарий эволюции Вселенной, допускающий, что в экстремальных условиях ранних стадий эволюции космическое отталкивание какое-то мгновение преобладало над гравитацией, заставив Вселенную взорваться, после чего его роль практически свелась к нулю.

Эта общая картина вырисовывается из последних работ по изучению поведения материи и сил на очень ранних этапах развития Вселенной. Стало ясно, что гигантское космическое отталкивание - неизбежный результат действия Суперсилы. Итак, « антигравитация », которую Эйнштейн прогнал в дверь, вернулась через окно!

Ключ к пониманию нового открытия космического отталкивания дает природа квантового вакуума. Мы видели, как такое отталкивание может быть обусловлено необычной невидимой средой, не отличимой от пустого пространства, но обладающей отрицательным давлением. Сегодня физики считают, что именно такими свойствами обладает квантовый вакуум.

В гл.7 отмечалось, что вакуум следует рассматривать как своего рода «фермент» квантовой активности, кишащий виртуальными частицами и насыщенный сложными взаимодействиями. Очень важно понять, что в рамках квантового описания вакуум играет определяющую роль. То, что мы называем частицами - всего лишь редкие возмущения, подобные «пузырькам» на поверхности целого моря активности.

В конце 70-х годов стало очевидно, что объединение четырех взаимодействий требует полного пересмотра представлений о физической природе вакуума. Теория предполагает, что энергия вакуума проявляется отнюдь не однозначно. Попросту говоря, вакуум может быть возбужденным и находиться в одном из многих состояний с сильно различающимися энергиями, подобно тому как атом может возбуждаться, переходя на уровни с более высокой энергией. Эти собственные состояния вакуума - если бы мы могли их наблюдать - выглядели бы совершенно одинаково, хотя обладают совершенно разными свойствами.

Прежде всего, заключенная в вакууме энергия в огромных количествах перетекает из одного состояния в другое. В теориях Великого объединения, например, различие между самой низкой и самой высокой энергиями вакуума невообразимо велико. Чтобы получить какое-то представление о гигантских масштабах этих величин, оценим энергию, выделенную Солнцем за весь период его существования (около 5 млрд. лет). Представим себе, что все это коллоссальное количество испущенной Солнцем энергии заключено в область пространства, по размерам меньшую Солнечной системы. Достигнутые в этом случае плотности энергии близки к плотностям энергии, соответствующим состоянию вакуума в ТВО.

Наряду с потрясающими разностями энергий различным вакуумным состояниям соответствуют столь же гигантские разности давлений. Но здесь-то и кроется «фокус»: все эти давления - отрицательные. Квантовый вакуум ведет себя точно так же, как упомянутая ранее гипотетическая среда, создающая космическое отталкивание, только на этот раз численные значения давления столь велики, что отталкивание в 10^120 раз превосходит силу, которая понадобилась Эйнштейну для поддержания равновесия в статической Вселенной.

Теперь открыт путь и для объяснения Большого взрыва. Предположим, что вначале Вселенная находилась в возбужденном состоянии вакуума, которое называют «ложным» вакуумом. В этом состоянии во Вселенной действовало космическое отталкивание такой величины, которое вызвало бы безудержное и стремительное расширение Вселенной. По существу, в этой фазе Вселенная соответствовала бы модели де Ситтера, о которой шла речь в предыдущем разделе. Разница, однако, состоит в том, что у де Ситтера Вселенная спокойно расширяется в астрономических масштабах времени, тогда как «фаза де Ситтера » в эволюции Вселенной из «ложного» квантового вакуума в действительности далеко не спокойна. Занимаемый Вселенной объем пространства должен в этом случае удваиваться каждые 10^-34 с (или промежуток времени такого же порядка).

Подобное сверхрасширение Вселенной имеет ряд характерных особенностей: все расстояния возрастают по экспоненциальному закону (с понятием экспоненты мы уже встречались в гл.4). Это означает, что каждые 10^-34 с все области Вселенной удваивают свои размеры, а затем этот процесс удвоения продолжается в геометрической прогрессии. Такой тип расширения, впервые рассмотренный в 1980г. Аланом Гутом из МТИ (Массачусетский технологический институт, США), был назван им «инфляцией». В результате чрезвычайно быстрого и непрерывно ускоряющегося расширения очень скоро оказалось бы, что все части Вселенной разлетаются, как при взрыве. А это и есть Большой взрыв!

Однако так или иначе, но фаза инфляции должна прекратиться. Как и во всех возбужденных квантовых системах, «ложный» вакуум неустойчив и стремится к распаду. Когда распад происходит, отталкивание исчезает. Это в свою очередь ведет к прекращению инфляции и переходу Вселенной во власть обычного гравитационного притяжения. Разумеется, Вселенная и в этом случае продолжала бы расширяться благодаря первоначальному импульсу, приобретенному в период инфляции, однако скорость расширения неуклонно снижалась бы. Таким образом, единственный след, сохранившийся до настоящего времени от космического отталкивания, - это постепенное замедление расширения Вселенной.

Согласно «инфляционному сценарию», Вселенная начала свое существование из состояния вакуума, лишенного вещества и излучения. Но, если бы даже они присутствовали изначально, их следы быстро затерялись бы вследствие огромной скорости расширения в фазе инфляции. За чрезвычайно короткий отрезок времени, соответствующий этой фазе, область пространства, которую сегодня занимает вся наблюдаемая Вселенная, выросла от миллиардной доли размера протона до нескольких сантиметров. Плотность любого существовавшего первоначально вещества фактически стала бы равной нулю.

Итак, к концу фазы инфляции Вселенная была пустой и холодной. Однако, когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Этот всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Когда состояние вакуума распалось, его энергия высвободилась в виде излучения, которое мгновенно нагрело Вселенную примерно до 10^27 К, что достаточно для протекания процессов в ТВО. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва. Благодаря тепловой энергии возникло вещество и антивещество, затем Вселенная стала остывать, и постепенно стали «вымораживаться» все ее элементы, наблюдаемые сегодня.

Таким образом, трудную проблему - чем вызван Большой взрыв? - удалось решить с помощью теории инфляции; пустое пространство самопроизвольно взорвалось под действием отталкивания, свойственного квантовому вакууму. Однако загадка по-прежнему остается. Колоссальная энергия первичного взрыва, пошедшая на образование вещества и излучения, существующих во Вселенной, должна была откуда-то взяться! Мы не сможем объяснить существование Вселенной, пока не найдем источник первичной энергии.

Космический бутстрэп

Англ. bootstrap в буквальном смысле означает « зашнуровка », в переносном - самосогласование, отсутствие иерархии в системе элементарных частиц.

Вселенная родилась в процессе гигантского выброса энергии. Следы ее мы обнаруживаем до сих пор - это фоновое тепловое излучение и космическое вещество (в частности, атомы, из которых состоят звезды и планеты), хранящее определенную энергию в виде «массы». Следы этой энергии проявляются также в разбегании галактик и в бурной активности астрономических объектов. Первичная энергия «завела пружину» рождающейся Вселенной и по сей день продолжает приводить ее в действие.

Откуда же взялась эта энергия, вдохнувшая жизнь в нашу Вселенную? Согласно теории инфляции, это - энергия пустого пространства, иначе - квантового вакуума. Однако может ли такой ответ полностью удовлетворить нас? Естественно спросить, каким образом приобрел энергию вакуум.

Вообще, задавая вопрос о том, откуда возникла энергия, мы по существу делаем важное предположение о природе этой энергии. Одним из фундаментальных законов физики является закон сохранения энергии, согласно которому различные формы энергии могут изменяться и переходить одна в другую, однако полное количество энергии остается неизменным.

Нетрудно привести примеры, в которых можно проверить действие этого закона. Предположим, у нас имеется двигатель и запас горючего, причем двигатель используется в качестве привода электрического генератора, который в свою очередь питает электроэнергией нагреватель. При сгорании топлива запасенная в нем химическая энергия пре­образуется в механическую, затем в электрическую и, наконец, в тепловую. Или допустим, что двигатель, используется для подъема груза на вершину башни, после чего груз свободно падает; при ударе о землю возникает в точности такое же количество тепловой энергии, как и в примере с нагревателем. Дело в том, что, как бы энергия ни передавалась или как бы ни изменялась ее форма, ее, очевидно, нельзя ни, создать, ни уничтожить. Этим законом инженеры пользуются в повседневной практике.

Если энергию нельзя ни создать, ни уничтожить, то как же все-таки возникает первичная энергия? Не впрыскивается ли она просто в первый момент (своего рода новое начальное условие, принимаемое ad hoc )? Если так, то почему Вселенная содержит данное, а не какое-то другое количество энергии? В доступной наблюдению Вселенной заключено около 10^68 Дж (джоулей) энергии - почему, скажем, не 10^99 или 10^10000 или любое другое число?

Теория инфляции предлагает одно из возможных научных объяснений этой загадки. Согласно этой теории. Вселенная вначале имела энергию, фактически равную нулю, и за первые 10^32 с ей удалось вызвать к жизни все гигантское количество энергии. Ключ к пониманию этого чуда следует искать в том замечательном факте, что закон сохранения энергии в обычном смысле не применим к расширяющейся Вселенной.

По существу, мы уже встречались с подобным фактом. Космологическое расширение приводит к понижению температуры Вселенной: соответственно энергия теплового излучения, столь большая в первичной фазе, истощается и температура опускается до значений, близких к абсолютному нулю. Куда же делась вся эта тепловая энергия? В некотором смысле она израсходована Вселенной на расширение и обеспечила давление, дополняющее силу Большого взрыва. При расширении обычной жидкости ее давление, направленное наружу, совершает работу, используя энергию жидкости. При расширении обычного газа его внутренняя энергия расходуется на совершение работы. В полную противоположность этому космическое отталкивание сходно с поведением среды с отрицательным давлением. При расширении такой среды ее энергия не уменьшается, а растет. Именно это и происходило в период инфляции, когда космическое отталкивание заставило Вселенную ускоренно расширяться. В течение всего этого периода полная энергия вакуума продолжала возрастать, пока к концу периода инфляции не достигла громадной величины. Как только период инфляции завершился, вся накопленная энергия высвободилась в одном гигантском всплеске, порождая теплоту и вещество в полном масштабе Большого взрыва. С этого момента началось обычное расширение с положительным давлением, так что энергия вновь стала уменьшаться.

Возникновение первичной энергии отмечено каким-то волшебством. Вакуум с таинственным отрицательным давлением, наделен, по-видимому, совершенно невероятными возможностями. С одной стороны, он создает гигантскую силу отталкивания, обеспечивающую его все ускоряющееся расширение, а с другой - само расширение форсирует возрастание энергии вакуума. Вакуум, по существу, сам питает себя энергией в огромных количествах. В нем заложена внутренняя неустойчивость, обеспечивающая непрерывное расширение и неограниченное производство энергии. И только квантовый распад ложного вакуума кладет предел этому «космическому мотовству».

Вакуум служит у природы волшебным, бездонным кувшином энергии. В принципе не существует предела величины энергии, которая могла бы выделяться в ходе инфляционного расширения. Это утверждение знаменует собой переворот в традиционном мышлении с его многовековым «из ничего не родится ничто» (это изречение датируется, по крайней мере эпохой Парменидов, т.е. V в. до н.э.). Идея о возможности «сотворения» из ничего до недавнего времени целиком находилась в компетенции религий. В частности, христиане издавна верят, что бог сотворил мир из Ничего, однако мысль о возможности самопроизвольного возникновения всего вещества и энергии в результате чисто физических процессов еще десяток лет назад считалось учеными абсолютно неприемлемой.

Те, кто не может внутренне примириться со всей концепцией возникновения «чего-то» из «ничего», имеют возможность иначе взглянуть на возникновение энергии при расширении Вселенной. Поскольку обычная гравитация имеет характер притяжения, для удаления частей вещества друг от друга необходимо совершить работу по преодолению гравитации, действующей между этими частями. Это означает, что гравитационная энергия системы тел отрицательна; при добавлении к системе новых тел происходит высвобождение энергии, и вследствие этого гравитационная энергия становится «еще более отрицательной». Если применить это рассуждение ко Вселенной на стадии инфляции, то именно появление теплоты и вещества как бы «компенсирует» отрицательную гравитационную энергию образовавшихся масс. В этом случае полная энергия Вселенной в целом равна нулю и никакой новой энергии вообще не возникает! Подобный взгляд на процесс «сотворения мира», конечно, привлекателен, однако его все же не следует принимать слишком всерьез, поскольку в целом статус понятия энергии применительно к гравитации оказывается сомнительным.

Все сказанное здесь о вакууме очень напоминает излюбленную физиками историю о мальчике, который, провалившись в болото, вытащил себя за шнурки от собственных ботинок. Самосоздающаяся Вселенная напоминает этого мальчика - она тоже вытягивает сама себя за собственные «шнурки» (этот процесс обозначается термином « бутстрэп »). Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для «создания» и «оживления» материи, а также инициирует порождающий ее взрыв. Это и есть космический бутстрэп; его поразительному могуществу мы и обязаны своим существованием.

Успехи теории инфляции

После того как Гут выдвинул основополагающую идею о том, что Вселенная претерпела ранний период чрезвычайно быстрого расширения, стало очевидно, что такой сценарий позволяет красиво объяснить многие особенности космологии Большого взрыва, которые ранее принимались «на веру».

В одном из предшествующих разделов мы встретились с парадоксами очень высокой степени организации и согласованности первичного взрыва. Один из замечательных примеров тому - сила взрыва, которая оказалась точно «подогнанной» к величине гравитации космоса, вследствие чего скорость расширения Вселенной в наше время очень близка к граничному значению, разделяющему сжатие (коллапс) и быстрое разбегание. Решающая проверка инфляционного сценария как раз и состоит в том, предусматривает ли он Большой взрыв настолько точно определенной силы. Оказывается, что благодаря экспоненциальному расширению в фазе инфляции (что составляет ее самое характерное свойство) сила взрыва автоматически строго обеспечивает возможность преодоления Вселенной собственной гравитации. Инфляция может привести именно к той скорости расширения, которая наблюдается в действительности.

Другая «великая загадка» связана с однородностью Вселенной в больших масштабах. Она также немедленно решается на основе теории инфляции. Любые первоначальные неоднородности в структуре Вселенной должны абсолютно стираться при грандиозном увеличении ее размеров, подобно тому, как складки на спущенном воздушном шаре разглаживаются при его надувании. А в результате увеличения размеров пространственных областей примерно в 10^50 раз любое начальное возмущение становится несущественным.

Однако неверно было бы говорить о полной однородности. Чтобы стало возможным появление современных галактик и галактических скоплений, структура ранней Вселенной должна была иметь некоторую «комковатость». Первоначально астрономы надеялись, что существование галактик можно объяснить скоплением вещества под действием гравитационного притяжения после Большого взрыва. Облако газа должно сжиматься под действием собственной гравитации, а затем распадаться на более мелкие фрагменты, а те в свою очередь - на еще меньшие и т.д. Возможно, распределение газа, возникшее в результате Большого взрыва, было совершенно однородным, но за счет чисто случайных процессов то там, то здесь возникали сгущения и разрежения. Гравитация еще более усиливала эти флуктуации, приводя к разрастанию областей сгущения и поглощению ими добавочного вещества. Затем эти области сжимались и последовательно распадались, а сгущения наименьших размеров превращались в звезды. В конце концов, возникла иерархия структур: звезды объединялись в группы, те - в галактики и далее в скопления галактик.

К сожалению, если в газе с самого начала не было неоднородностей, то такой механизм возникновения галактик сработал бы за время, значительно превышающее возраст Вселенной. Дело в том, что процессы сгущения и фрагментации конкурировали с расширением Вселенной, которое сопровождалось рассеянием газа. В первоначальном варианте теории Большого взрыва предполагалось, что «зародыши» галактик существовали изначально в структуре Вселенной при ее возникновении. Более того, эти начальные неоднородности должны были иметь вполне определенные размеры: не слишком малые, иначе никогда бы не образовались, но и не слишком большие, иначе области большой плотности просто испытали бы коллапс, превратившись в огромные черные дыры. При этом совершенно непонятно, почему галактики имеют именно такие размеры или почему в скопление входит именно такое число галактик.

Инфляционный сценарий дает более последовательное объяснение галактической структуры. Основная идея достаточно проста. Инфляция обусловлена тем, что квантовым состоянием Вселенной является неустойчивое состояние ложного вакуума. В конце концов, это состояние вакуума распадается, и избыток его энергии превращается в теплоту и вещество. В этот момент космическое отталкивание исчезает - и инфляция прекращается. Однако распад ложного вакуума происходит не строго одновременно во всем пространстве. Как и в любых квантовых процессах, скорости распада ложного вакуума флуктуируют. В некоторых областях Вселенной распад осуществляется несколько быстрее, чем в других. В этих областях инфляция завершится раньше. В результате этого неоднородности сохраняются и в конечном состоянии. Не исключено, что эти неоднородности могли служить «зародышами» (центрами) гравитационного сжатия и, в конце концов, привели к образованию галактик и их скоплений. Проводилось математическое моделирование механизма флуктуаций, однако, с весьма ограниченным успехом. Как правило, эффект оказывается слишком большим, вычисленные неоднородности - слишком значительными. Правда, использовались слишком грубые модели и, возможно, более тонкий подход оказался бы более успешным. Хотя теория пока далека от завершения, она, по крайней мере, описывает характер механизма, который мог бы привести к возникновению галактик без необходимости введения специальных начальных условий.

В предложенном Гутом варианте инфляционного сценария ложный вакуум вначале превращается в «истинный», или в вакуумное состояние с наинизшей энергией, которое мы отождествляем с пустым пространством. Характер этого изменения вполне аналогичен фазовому переходу (например, из газа в жидкость). При этом в ложном вакууме происходило бы случайное образование пузырьков истинного вакуума, которые, расширяясь со скоростью света, захватывали бы все большие области пространства. Чтобы ложный вакуум мог просуществовать достаточно долго и инфляция совершила бы свое «чудотворное» дело, эти два состояния должны быть разделены энергетическим барьером, сквозь который должно произойти «квантовое туннелирование » системы, аналогично тому, как это происходит с электронами (см. гл. ). Однако у этой модели есть один серьезный недостаток: вся энергия, выделившаяся из ложного вакуума, оказывается сконцентрированной в стенках пузырьков и отсутствует механизм ее перераспределения по всему пузырьку. При столкновении и слиянии пузырьков энергия в конечном счете накапливалась бы в беспорядочно перемешанных слоях. В результате Вселенная содержала бы очень сильные неоднородности, и вся работа инфляции по созданию крупномасштабной однородности потерпела бы крах.

При дальнейшем усовершенствовании инфляционного сценария эти трудности удалось обойти. В новой теории отсутствует туннелирование между двумя состояниями вакуума; вместо этого параметры выбираются так, что распад ложного вакуума происходит очень медленно и, таким образом, Вселенная получает достаточное время для инфляции. Когда же распад завершается, энергия ложного вакуума высвобождается во всем объеме «пузыря», который быстро нагревается до 10^27 К. Предполагается, что вся наблюдаемая Вселенная содержится в одном таком пузыре. Таким образом, в ультрабольших масштабах Вселенная может быть крайне нерегулярной, но доступная нашему наблюдению область (и даже значительно более крупные части Вселенной) находится в пределах полностью однородной зоны.

Любопытно, что Гут первоначально разрабатывал свою инфляционную теорию для решения совершенно другой космологической проблемы - отсутствия в природе магнитных монополей. Как показано в гл.9, стандартная теория Большого взрыва предсказывает, что в первичной фазе эволюции Вселенной монополи должны возникать в избытке. Они, возможно, сопровождаются их одно- и двумерными аналогами - странными объектами, имеющими характер «струны» и «листа». Проблема заключалась в том, чтобы избавить Вселенную от этих «нежелательных» объектов. Инфляция автоматически решает проблему монополей и другие аналогичные проблемы, поскольку гигантское расширение пространства эффективно уменьшает их плотность до нуля.

Хотя инфляционный сценарий разработан только частично и всего лишь правдоподобен, не более, он позволил сформулировать ряд идей, обещающих безвозвратно изменить облик космологии. Теперь мы не только можем предложить объяснение причины Большого взрыва, но и начинаем понимать, почему он был столь «большим» и почему принял такой характер. Мы можем теперь приступить к решению вопроса о том, каким образом возникла крупномасштабная однородность Вселенной, а наряду с ней - наблюдаемые неоднородности меньшего масштаба (например, галактики). Первичный взрыв, в котором возникло то, что мы называем Вселенной, отныне перестал быть загадкой, лежащей за пределами физической науки.

Вселенная, создающая сама себя

И все-таки, несмотря на огромный успех инфляционной теории в объяснении происхождения Вселенной, тайна остается. Каким образом Вселенная первоначально оказалась в состоянии ложного вакуума? Что происходило до инфляции?

Последовательное, вполне удовлетворительное научное описание возникновения Вселенной должно объяснять, как возникло само пространство (точнее, пространство-время), которое затем подверглось инфляции. Одни ученые готовы допустить, что пространство существует всегда, другие считают, что этот вопрос вообще выходит за рамки научного подхода. И лишь немногие претендуют на большее и убеждены, что вполне правомерно ставить вопрос о том, каким образом пространство вообще (и ложный вакуум, в частности) могло возникнуть буквально из «ничего» в результате физических процессов, в принципе поддающихся изучению.

Как уже отмечалось, мы лишь недавно бросили вызов стойкому убеждению, «из ничего не возникает ничто». Космический бутстрэп близок теологической концепции сотворения мира из ничего (ex nihilo). Без сомнения, в окружающем нас мире существование одних объектов обусловлено обычно наличием других объектов. Так, Земля возникла из протосолнечной туманности, та в свою очередь - из галактических газов и т.д. Если бы нам довелось увидеть объект, внезапно возникший «из ничего», мы, по-видимому, восприняли бы это как чудо; например, нас поразило бы, если бы в запертом пустом сейфе мы вдруг обнаружили массу монет, ножей или сладостей. В повседневной жизни мы привыкли сознавать, что все возникает откуда-то или из чего-то.

Однако все не так очевидно, если речь идет о менее конкретных вещах. Из чего, например, возникает живописное полотно? Разумеется, для этого необходимы кисть, краски и холст, но ведь это всего лишь инструменты. Манера, в которой написана картина, - выбор формы, цвета, текстуры, композиции - рождается не кистями и красками. Это результат творческого воображения художника.

Из чего возникают мысли и идеи? Мысли, без сомнения, существуют реально и, по-видимому, всегда требуют участия мозга. Но мозг лишь обеспечивает реализацию мыслей, а не является их причиной. Сам по себе мозг порождает мысли не более чем, например, компьютер - вычисления. Мысли могут быть вызваны другими мыслями, однако это не раскрывает природы самой мысли. Некоторые мысли могут рождаться, ощущениями; мысли рождает и память. Большинство художников, однако, рассматривает свою работу как результат неожиданного вдохновения. Если это действительно так, то создание картины - или, по крайней мере, рождение ее идеи - как раз представляет собой пример рождения чего-то из ничего.

И все же можем ли мы считать, что физические объекты и даже Вселенная в целом возникают из ничего? Эта смелая гипотеза вполне серьезно обсуждается, например, в научных учреждениях восточного побережья США, где довольно много физиков-теоретиков и специалистов по космологии занимаются разработкой математического аппарата, который помог бы выяснить возможность рождения чего-то из ничего. В этот круг избранных входят Алан Гут из МТИ, Сидней Коулмен из Гарвардского университета, Алекс Виленкин из Университета Тафта, Эд Тайон и Хайнц Пейджелс из Нью-Йорка. Все они считают, что в том или ином смысле «ничто неустойчиво» и что физическая Вселенная спонтанно «распустилась из ничего», управляемая лишь законами физики. «Подобные идеи чисто умозрительны, - признается Гут, - однако на определенном уровне они, возможно, правильны... Иногда говорят, что бесплатного ланча не бывает, но Вселенная, по-видимому, как раз и являет собой такой «бесплатный ланч ».

Во всех этих гипотезах ключевую роль играет квантовое поведение. Как мы говорили в гл.2, основная особенность квантового поведения состоит в утрате строгой причинно-следственной связи. В классической физике изложение механики следовало строгому соблюдению причинности. Все детали движения каждой частицы были строго предопределены законами движения. Считалось, что движение непрерывно и строго определено действующими силами. Законы движения в прямом смысле воплощали в себе связь между причиной и следствием. Вселенная рассматривалась как гигантский часовой механизм, поведение которого строго регламентировано происходящим в данный момент. Именно вера в подобную всеобъемлющую и абсолютно строгую причинность побудила Пьера Лапласа утверждать, что сверхмощный калькулятор способен в принципе предвычислить на основе законов механики как историю, так и судьбу Вселенной. Согласно этой точке зрения, Вселенная обречена вечно следовать предписанному ей пути.

Квантовая физика разрушила методичную, но бесплодную лапласовскую схему. Физики убедились в том, что на атомном уровне материя и ее движение неопределенны и непредсказуемы. Частицы могут вести себя «сумасбродно», как бы сопротивляясь строго предписанным движениям, внезапно появляясь в самых неожиданных местах без видимых на то причин, а иногда возникая и исчезая «без предупреждения».

Квантовый мир не свободен полностью от причинности, однако она проявляется довольно нерешительно и неоднозначно. Например, если один атом в результате столкновения с другим атомом оказывается в возбужденном состоянии, он, как правило, быстро возвращается в состояние с наинизшей энергией, испуская при этом фотон. Возникновение фотона является, разумеется, следствием того, что атом перед этим перешел в возбужденное состояние. Мы можем с уверенностью сказать, что именно возбуждение привело к возникновению фотона, и в этом смысле связь причины и следствия сохраняется. Однако истинный момент возникновения фотона непредсказуем: атом может испустить его в любое мгновение. Физики в состоянии вычислить вероятное, или среднее, время появления фотона, но в каждом конкретном случае невозможно предсказать момент, когда это событие произойдет. Видимо, для характеристики подобной ситуации лучше всего сказать, что возбуждение атома не столько приводит к появлению фотона, сколько «подталкивает» его к этому.

Таким образом, квантовый микромир не опутан густой паутиной причинных взаимосвязей, но все же «прислушивается» к многочисленным ненавязчивым командам и предложениям. В старой ньютоновской схеме сила как бы обращалась к объекту с не допускающим возражения приказом: «Двигайся!». В квантовой физике взаимоотношения силы и объекта строятся скорее на приглашении, чем на приказе.

Почему вообще мы считаем столь неприемлемой мысль о внезапном рождении объекта «из ничего?» Что при этом заставляет нас думать о чудесах и сверхъестественных явлениях? Возможно, все дело лишь в необычности подобных событий: в повседневной жизни мы никогда не сталкиваемся с беспричинным появлением объектов. Когда, например, фокусник достает из шляпы кролика, мы знаем, что нас дурачат.

Предположим, что мы действительно живем в мире, где объекты время от времени явно возникают «ниоткуда», без всякой причины и притом совершенно непредсказуемым образом. Привыкнув к таким явлениям, мы перестали бы удивляться им. Спонтанное рождение воспринималось бы как одна из причуд природы. Возможно, в таком мире нам уже не пришлось бы напрягать свою доверчивость, чтобы представить внезапное возникновение из ничего всей физической Вселенной.

Этот воображаемый мир по существу не столь уж сильно отличается от реального. Если бы мы могли непосредственно воспринимать поведение атомов с помощью наших органов чувств (а не при посредничестве специальных приборов), нам бы частоприходилось наблюдать объекты, появляющиеся и исчезающие без четко определенных причин.

Явление, наиболее близкое «рождению из ничего», происходит в достаточно сильном электрическом поле. При критическом значении напряженности поля «из ничего» совершенно случайным образом начинают возникать электроны и позитроны. Расчеты показывают, что вблизи поверхности ядра урана напряженность электрического поля достаточно близка к пределу, за которым возникает этот эффект. Если бы существовали атомные ядра, содержащие 200 протонов (в ядре урана их 92), то происходило бы спонтанное рождение электронов и позитронов. К сожалению, ядро со столь большим числом протонов, по-видимому, становится крайне неустойчивым, но полной уверенности в этом нет.

Спонтанное рождение электронов и позитронов в сильном электрическом поле можно рассматривать как особый вид радиоактивности, когда распад испытывает пустое пространство, вакуум. Мы уже говорили о переходе одного вакуумного состояния в другое в результате распада. В этом случае вакуум распадается, превращаясь в состояние, в котором присутствуют частицы.

Хотя распад пространства, вызванный электрическим полем, трудно постижим, аналогичный процесс под действием гравитации вполне мог бы происходить в природе. Вблизи поверхности черных дыр гравитация столь сильна, что вакуум кишмя кишит непрерывно рождающимися частицами. Это и есть знаменитое излучение черных дыр, открытое Стивеном Хокингом. В конечном счете именно гравитация ответственна за рождение этого излучения, однако нельзя сказать, что это происходит «в старом ньютоновском смысле»: нельзя утверждать, что какая-то конкретная частица должна появиться в определенном месте в тот или иной момент времени в результате действия гравитационных сил. В любом случае, поскольку гравитация - лишь искривление пространства-времени, можно сказать, что пространство-время вызывает рождение вещества.

О спонтанном возникновении вещества из пустого пространства часто говорят как о рождении «из ничего», которое близко по духу рождению ex nihilo в христианской доктрине. Однако для физика пустое пространство совсем не «ничто», а весьма существенная часть физической Вселенной. Если мы все-таки хотим ответить на вопрос, как возникла Вселенная, то недостаточно предполагать, что с самого начала существовало пустое пространство. Необходимо объяснить, откуда взялось это пространство. Мысль о рождении самого пространства может показаться странной, однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное «разбухание» пространства. С каждым днем доступная нашим телескопам область Вселенной возрастает на 10^18 кубических световых лет. Откуда же берется это пространство? Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его «становится больше». Пространство напоминает суперэластик тем, что оно, насколько нам известно, может неограниченно долго растягиваться, не разрываясь.

Растяжение и искривление пространства напоминают деформацию упругого тела тем, что «движение» пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени. В предшествующих главах мы говорили, что квантовая гравитация рассматривается как необходимый этап поиска Суперсилы. В этой связи возникает любопытная возможность; если, согласно квантовой теории, частицы вещества могут возникать «из ничего», то применительно к гравитации не будет ли она описывать возникновение «из ничего» и пространства? Если это произойдет, то не является ли рождение Вселенной 18 млрд. лет назад, примером именно такого процесса?

Бесплатный ланч?

Основная идея квантовой космологии состоит в применении квантовой теории к Вселенной в целом: к пространству-времени и веществу; особенно серьезно эту идею рассматривают теоретики. На первый взгляд здесь налицо противоречие: квантовая физика имеет дело с самыми малыми системами, тогда как космология - с самыми большими. Тем не менее Вселенная когда-то также была ограничена очень малыми размерами и, следовательно, тогда были чрезвычайно важны квантовые эффекты. Результаты вычислений говорят о том, что квантовые законы следует учитывать в эру ТВО (10^-32 с), а в эру Планка (10^-43 с) они, вероятно, должны играть определяющую роль. Как считают некоторые теоретики (например, Виленкин), между этими двумя эпохами существовал момент времени, когда возникла Вселенная. По словам Сиднея Коулмена, мы совершили квантовый скачок из Ничего во Время. По-видимому, пространство-время представляет собой реликт этой эпохи. Квантовый скачок, о котором говорит Коулмен, можно рассматривать как своего рода «туннельный процесс». Мы отмечали, что в первоначальном варианте теории инфляции состояние ложного вакуума должно было туннелировать через энергетический барьер в состояние истинного вакуума. Однако, в случае спонтанного возникновения квантовой Вселенной «из ничего», наша интуиция достигает предела своих возможностей. Один конец туннеля представляет собой физическую Вселенную в пространстве и времени, которая попадает туда путем квантового туннелирования «из ничего». Следовательно, другой конец туннеля представляет собой это самое Ничто! Возможно, лучше было бы сказать, что у туннеля имеется лишь один конец, а второго просто «не существует».

Главная трудность этих попыток объяснить происхождение Вселенной состоит в описании процесса ее рождения из состояния ложного вакуума. Если бы вновь возникшее пространство-время оказалось в состоянии истинного вакуума, то инфляция никогда не смогла бы произойти. Большой взрыв свелся бы к слабому всплеску, а пространство-время спустя мгновение снова прекратило бы свое существование - его истребили бы те самые квантовые процессы, благодаря которым оно первоначально возникло. Не окажись Вселенная в состоянии ложного вакуума, она никогда не оказалась бы вовлеченной в космический бутстрэп и не материализовала бы свое иллюзорное существование. Возможно, состояние ложного вакуума оказывается предпочтительным благодаря характерным для него экстремальным условиям. Например, если Вселенная возникала при достаточно высокой начальной температуре, а затем остывала, то она могла бы даже «сесть на мель» в ложном вакууме, но пока многие технические вопросы такого типа остаются нерешенными.

Но как бы ни обстояло в действительности дело с этими фундаментальными проблемами, Вселенная должна тем или иным образом возникнуть, и квантовая физика представляет собой единственную область науки, в которой имеет смысл говорить о событии, происходящем без видимой причины. Если речь идет о пространстве-времени, то в любом случае бессмысленно говорить о причинности в обычном понимании. Обычно понятие причинности тесно связано с понятием времени, и потому любые соображения о процессах возникновения времени или его «выхода из небытия» должны опираться на более широкое представление о причинности.

Если пространство действительно десятимерно, то теория считает все десять измерений вполне равноправными на самых ранних стадиях. Привлекает возможность связать явление инфляции со спонтанной компактификацией (сворачиванием) семи из десяти измерений. Согласно такому сценарию, «движущая сила» инфляции представляет собой побочный продукт взаимодействий, проявляющихся через дополнительные измерения пространства. Далее десятимерное пространство могло бы естественно эволюционировать таким образом, что при инфляции три пространственных измерения сильно разрастаются за счет семи остальных, которые, напротив, сжимаются, становясь невидимыми? Таким образом, квантовый микропузырь десятимерного пространства сжимается, а три измерения благодаря этому раздуваются, образуя Вселенную: остальные семь измерений остаются в плену микрокосмоса, откуда проявляются лишь косвенно - в форме взаимодействий. Эта теория кажется очень привлекательной.

Несмотря на то, что теоретикам предстоит еще много работы по изучению природы очень ранней Вселенной, уже сейчас можно дать общий набросок событий, в результате которых Вселенная обрела наблюдаемый сегодня облик. В самом начале Вселенная спонтанно возникла «из ничего». Благодаря способности квантовой энергии служить своего рода ферментом, пузыри пустого пространства могли раздуваться со все возрастающей скоростью, создавая благодаря бутстрэпу колоссальные запасы энергии. Этот ложный вакуум, наполненный саморожденной энергией, оказался неустойчивым и стал распадаться, выделяя энергию в виде теплоты, так что каждый пузырек заполнился огнедышащей материей (файерболом). Раздувание (инфляция) пузырей прекратилось, но начался Большой взрыв. На «часах» Вселенной в этот момент было 10^-32 с.

Из такого файербола и возникла вся материя и все физические объекты. По мере остывания космический материал испытывал последовательные фазовые переходы. При каждом из переходов из первичного бесформенного материала «вымораживалось» все больше различных структур. Одно за другим отделялись друг от друга взаимодействия. Шаг за шагом объекты, которые мы называем теперь субатомными частицами, приобретали присущие им ныне черты. По мере того как состав «космического супа» все более усложнялся, оставшиеся со времен инфляции крупномасштабные нерегулярности разрастались в галактики. В процессе дальнейшего образования структур и обособления различных видов вещества Вселенная все больше приобретала знакомые формы; горячая плазма конденсировалась в атомы, формируя звезды, планеты и, в конечном счете, жизнь. Так Вселенная «осознала» самое себя.

Вещество, энергия, пространство, время, взаимодействия, поля, упорядоченность и структура - все эти понятия, заимствованные из «прейскуранта творца», служат неотъемлемыми характеристиками Вселенной. Новая физика приоткрывает заманчивую возможность научного объяснения происхождения всех этих вещей. Нам уже не нужно с самого начала специально вводить их «вручную». Мы можем увидеть, каким образом все фундаментальные свойства физического мира могут появиться автоматически как следствия законов физики, без необходимости предполагать существование крайне специфических начальных условий. Новая космология утверждает, что начальное состояние космоса не играет никакой роли, так как вся информация о нем стерлась в ходе инфляции. Наблюдаемая нами Вселенная несет на себе лишь отпечатки тех физических процессов, которые происходили с момента начала инфляции.

Тысячелетиями человечество верило в то, что «из ничего не родится ничто». Сегодня мы можем утверждать, что из ничего произошло все. За Вселенную не надо «платить» - это абсолютно «бесплатный ленч».



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта